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ABSTRACT 

Drift and Breaks in Labour Productivity* 

We use tests for multiple breaks at unknown points in the sample, and the 
Stock-Watson (1996, 1998) time-varying parameters median-unbiased 
estimation methodology, to investigate changes in the equilibrium rate of 
growth of labor productivity–both per hour and per worker–in the United 
States, the Eurozone Australia, and Japan over the post-WWII era. Results for 
the U.S. well capture the 'conventional wisdom’ of a golden era of high 
productivity growth, the 1950s and 1960s; a marked deceleration starting from 
the beginning of the 1970s; and a strong growth resurgence starting from mid-
1990s. Interestingly, evidence suggests the 1990s’ productivity acceleration to 
have reached a plateau over the last few years. Results for the Eurozone 
point towards a marked deceleration since the beginning of the 1980s, with 
the equilibrium rate of growth of output per hour falling to 0.9% in 2004:4. 
Results based on Cochrane’s variance ratio estimator suggest a non-
negligible fraction of the quarter-on-quarter change in labor productivity growth 
to be permanent. From a technical point of view, we propose a new method 
for constructing confidence intervals for variance ratio estimates based on 
spectral bootstrapping. Preliminary Monte Carlo evidence suggests such a 
method to possess good coverage properties. 
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1 Introduction

Changes over time in equilibrium productivity growth are of interest to economists for
several reasons. First, in the long run productivity is the key underlying determinant
of a society’s standards of living, and its possible future evolution plays therefore a
crucial role in some of the most hotly debated current policy issues, like the future
solvency of pension systems. As stressed by Robert Gordon1 within the context of
the debate on the future of Social Security in the United States, for example,

[t]here has been insufficient attention in public discussions of the Social
Security ‘crisis’ that the official assumptions about future growth by the
Social Security Administration are unbelievably pessimistic. [...] [T]hese
assumptions are for growth over the next 75 years in real GDP of 1.4
percent, in the labor force of 0.3 percent, and in business productivity of
1.3 percent. [...] [T]he Social Security Administration has an alternative
forecast of 2.14 percent growth in real GDP that puts off the ‘day of
reckoning’ until 2072. Potential output growth of 2.9 percent would put
off the day of reckoning until the year 2116 [...].

As Gordon makes clear, even seemingly mild differences in the assumptions con-
cerning potential output growh have markedly different implications for the precise
date in which U.S. Social Security will become insolvent. In particular, in the light
of both a vast literature documenting the U.S. productivity acceleration since the
second half of the 1990s, and the results reported in the present work–with trend
productivity growth in both the U.S. nonfarm business and the business sectors esti-
mated at 2.7% at the end of 2005–assuming a trend rate of growth of productivity
in the business sector of 1.3% appears indeed as unduly pessimistic.2

Second, mis-estimation of the true underlying equilibrium productivity growth
rate may lead, in principle, to serious policy mistakes. In a series of influential
papers,3 Athanasios Orphanides has argued, for example, that part of the blame
for the Great Inflation should be attributed to the FED’s inability to detect, in
real time, the productivity slowdown of the beginning of the 1970s, thus leading to
an over-estimation of the authentic amount of slack existing in the economy.4 A
conceptually equivalent way of making the same point is that, as stressed by, e.g.,
Laubach and Williams (2003), changes in the rate of growth of potential output are
closely linked to changes in the Wicksellian rate of interest, so that failure to identify

1See Gordon (1999).
2This does not imply, however, that a ‘conservative’ estimate should be regarded as irrational

or unjustified, when risk considerations are taken into account. As this paper shows, indeed, U.S.
trend productivity growth has fluctuated quite substantially over the post-WWII era, so that, on
strictly logical grounds, a future productivity slowdown should not be ruled out.

3See e.g. Orphanides (2003).
4For an analysis of the consequences of learning about changes in trend productivity growth

within the context of a DSGE model, see Edge, Laubach, and Williams (2004).
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shifts in equilibrium productivity growth automatically leads to a mis-estimation of
the natural rate of interest, with potentially dire consequences for monetary policy.5

In this paper we use tests for multiple breaks at unknown points in the sam-
ple, and the Stock-Watson (1996, 1998) time-varying parameters median-unbiased
estimation methodology, to investigate changes in the equilibrium rate of growth of
labor productivity–both per hour and per worker–in the United States, the Euro-
zone, Australia, and Japan over the post-WWII period. Based on either the Bai and
Perron (1998, 2003) methodology, or the Bai (1997b) method of estimating multiple
breaks sequentially, one at a time, structural break tests produce, overall, surprisingly
little evidence of time-variation in trend productivity growth. As we argue based on
Monte Carlo simulations of estimated time-varying parameters models–and in line
with conceptually similar evidence produced by Cogley and Sargent (2005)–the most
likely explanation for break tests’ failure to detect much evidence of time-variation
is that historical changes in equilibrium productivity growth have simply been too
gradual to be detectable via such a powerful, but ultimately quite crude methodology.
The more flexible Stock andWatson’s (1996, 1998) time-varying parameters median-

unbiased estimation (henceforth, TVP-MUB) methodology–based on the notion that
the underlying DGP may be characterised by random-walk drift–detects indeed
strong evidence of time-variation for both the United States and the Eurozone. Re-
sults for output per hour in the United States well capture the ‘conventional wisdom’
of a golden era of high productivity growth, the 1950s and 1960s; a marked decel-
eration starting from the beginning of the 1970s; and a strong growth resurgence
starting from mid-1990s. Interestingly, evidence clearly suggests the 1990s’ produc-
tivity acceleration to have reached a plateau over the last few years. Results for the
Eurozone point towards a marked deceleration since the beginning of the 1980s, with
the equilibrium rate of growth of output per hour falling to 0.9% in 2004:4. As for
the other contries, we detect some mild evidence of time-variation for Japan, while
for Australia we identify time-variation in the rate of growth of output per hour, but
not in that of output per worker.
Evidence of random-walk time-variation in equilibrium labor productivity growth

then naturally induces us to investigate the conceptually related issue of what fraction
of the quarter-on-quarter change in labor productivity growth should be regarded as
permanent, which we do via Cochrane’s (1988) variance ratio estimator. We estimate
a 90% confidence interval for the the ‘size of the unit root’ in U.S. labor productivity
growth in the non-farm business and in the business sectors to be [2.3; 8.3] and
[1.8; 6.4], respectively, with median point estimates equal to 4.0% and 2.8%, thus
clearly pointing towards a non-negligible fraction of quarter-on-quarter changes in
labor productivity growth as being permanent.
Finally, from a technical point of view, the paper proposes a new method for

constructing confidence intervals for variance ratio estimates based on spectral boot-

5Conceptually in line with the present work, Laubach and Williams (2003) identify significant
changes in the Wicksellian rate of interest in the United States over the post-WWII era.
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strapping. Preliminary Monte Carlo evidence suggests such a method to possess good
coverage properties.
The immediate implication of our findings for monetary policy is that the problems

arising from changes in equilibrium productivity growth discussed by Orphanides
within the context of the U.S. Great Inflation of the 1970s should be regarded as part
of the normal ‘macroeconomic landscape’, i.e. of the normal set of problems central
banks have to worry about–at least, in the United States.
The paper is organised as follows. The next section presents results from tests for

multiple structural breaks at unknown points in the sample in the mean, based on
(a) Andrews’ (1993) sup-Wald and Andrews and Ploberger’s (1994) exp-Wald test
statistics, and Bai’s (1997a) method of estimating multiple breaks sequentially, one at
a time, and (b) the multiple break tests methodology introduced by Bai and Perron
(1998, 2003). In Section 3 we present results based on Stock and Watson’s (1996,
1998) TVP-MUB estimation methodology applied to univariate autoregressions for
labor productivity growth. Section 4 presents a Monte Carlo investigation of the
power of structural break tests conditional on taking, as data generation processes,
some of the models estimated in section 3. In section 4 we perform an exercise in
the spirit of Edge, Laubach, and Williams (2004), by recursively applying the Stock-
Watson methodology to the rates of growth of U.S. output per hour in the nonfarm
business and in the business sectors since the beginning of the 1970s, thus computing
pseudo real-time estimates of long-run productivity growth. Finally, having detected,
in section 3, evidence of random walk time-variation for many series in our dataset,
we estimate, in section 5, the size of the permanent component of the quarter-on-
quarter change in labor productivity growth, based on Cohrane’s (1988) variance
ratio estimator. Section 6 concludes.

2 Testing for Breaks in the Mean

2.1 Results based on Bai (1997b), and Andrews (1993) and
Andrews and Ploberger (1994)

We start by testing for multiple structural breaks at unknown points in the sample
in the mean of labor productivity growth. Our first approach combines the Bai and
Perron (2003) method of testing for breaks in the mean by regressing the series on
a constant, using the Newey and West (1987) covariance matrix estimator to control
for autocorrelation and/or heteroskedasticity in the residuals;6 the Andrews (1993)
and Andrews and Ploberger (1994) sup-Wald and exp-Wald test statistics; and the
Bai (1997a) method of estimating multiple breaks sequentially, one at a time.7 We

6For an application of this methodology to inflation rates and real interest rates, see Rapach and
Wohar (2003).

7As discussed in Bai (1997a), sequential estimation of the break dates, compared to the alterna-
tive simultaneous estimation, presents two key advantages. First, computational savings. Second,
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impose 15% symmetric trimming, and we bootstrap the critical values as in Diebold
and Chen (1996), setting the number of bootstrap replications to 1,000. Finally, we
compute confidence intervals for estimated break dates according to Bai (1997b).
Table 1 reports the results based on the Andrews-Ploberger exp-Wald statistic.8

Quite surprisingly, we identify break dates for only four series, output per hour in
the U.S. business and manufacturing sectors, and real GDP per hour and per worker
in the Eurozone. Results for the Eurozone well accord with the conventional wisdom
notion of a significant productivity slowdown over the most recent period, with the
equilibrium (mean) rate of growth of real GDP per hour estimated to have fallen
from 2.3% before 1995:1 to 0.9% over the most recent sub-period; and real GDP per
worker having even experienced two breaks since the beginning of the 1970s, with
equilibrium growth estimated to have decreased from the 3.6% of the first sub-period
to a paltry 0.6% over the most recent one.
In the light of the vast literature documenting the U.S. productivity resurgence

since mid-1990s, results for the United States appear instead as puzzling. First,
although we estimate a break in mean productivity growth for the overall manufac-
turing sector, with a marked increase from 3.2% before 2001:4 to 5.8% after that, the
estimated break date appears clearly at odds with the conventional wisdom notion
that the U.S. productivity acceleration started around mid-1990s.9 Second, as for the
business sector our results, with a single estimated break in 1966:2, and a fall in
mean productivity growth from 3.5% to 2.1%, uniquely capture the 1970s produc-
tivity slowdown, and entirely fail to capture the productivity resurgence of the most
recent period. Third, in the light of the previously discussed vast literature docu-
menting the U.S. productivity resurgence of the second half of the 1990s, failure to
identify break dates for all other series–in particular, output per hour in the nonfarm
business sector, traditionally regarded as the ‘bellweather series’ for U.S. productivity
studies–is especially puzzling. What can account for these results?
There are two possible explanations for our failure to identify much evidence of

time-variation in labor productivity growth, which we explore in the next paragraph
and in section 4, respectively. The first explanation has to do with a well-known
weakness of Bai’s (1997a) sequential procedure for break dates estimation when the
parameter whose constancy is being tested experiences first a decrease (increase) and
then an increase (decrease). Given that in these cases it is comparatively hard to
identify the first break to begin with, the entire procedure tends to break down, and
no break date ends up being estimated. The procedure proposed by Bai and Perron
(1998, 2003), which is based on the notion of assessing which, among a set of models
with and without breaks, is more likely to have generated the data, is on the other

robustness to misspecification in the number of breaks.
8Results based on Andrews’ sup-Wald test statistics are identical, and therefore are not reported

here, but are available from the author upon request.
9As we will see in section 3, results based on the Stock-Watson methodology clearly suggest that

the productivity acceleration in the U.S. manufacturing sector started in the first half of the 1990s.
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hand in principle immune to this kind of problem. While in principle this appears,
at least for the United States, a likely explanation for our failure to identify much
evidence of time-variation, as we will see in the next paragraph this is clearly not the
case, as results based on the Bai-Perron procedure are near-identical to the ones we
just discussed.
The second explanation is that historical changes in equilibrium rates of labor

productivity growth may have simply been too gradual to be detectable via a powerful
but, ultimately, intrinsically quite crude procedure such as structural break tests.
The evidence produced by Cogley and Sargent (2005) of a sometimes remarkably low
power of structural break tests, conditional on taking their estimated Bayesian time-
varying parameters VAR as data generation process (henceforth, DGP), provides
prima facie evidence that this may be the correct explanation. As we will see in
section 4, this appears indeed to be the case: conditional on taking as DGPs some
of the models estimated via the Stock-Watson TVP-MUB estimation methodology,
which is characterised by random-walk time-variation, break tests–specifically, both
the Andrews-Ploberger exp-Wald statistic and the Bai-Perron ‘double maximum’ test
statistics–exhibit a power ranging between 31% and 43%.

2.2 Results based on Bai and Perron (1998, 2003)

Let’s now turn to the results from the Bai-Perron methodology. In what follows we
exactly follow the recommendations of Bai and Perron (2003),10 with the only differ-
ence that, instead of relying on the asymptotic critical values tabulated in Bai and
Perron (1998), and encoded in Pierre Perron’s Gauss code, we bootstrap both critical
and p-values as in Diebold and Chen (1996), setting the number of bootstrap repli-
cations to 1,000. We start by looking at the UDmax and WDmax double maximum
test statistics. Conditional on both statistics being significant at the 10% level–thus
indicating the presence of at least one break–we decide on the number of breaks by
sequentially examining the sup-F( +1| ) test statistics, starting from the sup-F(2|1)
one. Finally, we set the maximum allowed number of structural changes to m=4.
Tables 2-4 report the results. As the tables clearly show, compared with the

results we saw in the previous paragraph the only significant difference concerns
the series for U.S. output per hour in the business sector, for which, in line with
Fernald (2005), we identify two break dates, in 1973:1 and 1997:1, and a U-shaped
evolution of mean productivity growth, first falling from 3.3% to 1.7%, and then
increasing to 3.1% over the most recent sub-period.11 As for the other series, first, as
in the previous paragraph, we only identify break dates for U.S. output per hour in
the overall manufacturing sector, and for real GDP per hour and per worker in the
Eurozone; and second, in all cases the difference between the break dates reported in
Table 3 and those reported in Table 1 is at most one quarter.

10See Bai and Perron (2003) section 5.5, ‘Summary and Practical Recommendations’.
11Output per hour in the business sector is the only series considered by Fernald (2005).
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Overall, failure to identify much evidence of time-variation in mean labor pro-
ductivity growth based on structural break tests appears therefore as an extremely
robust finding. As we mentioned in the previous paragraph, however, one possible
explanation for our results is that historical changes in equilibrium labor productivity
growth may have been so gradual as to be hard to detect via break tests. A simple
way of formalising, from an econometric point of view, the notion of ‘gradual change’
in the underlying DGP is via time-varying parameters models, and we therefore now
turn to the Stock and Watson (1996, 1998) TVP-MUB methodology, which presents
the attractiveness of allowing the researcher to test for the presence of random-walk
time-variation in the data, against the null of time-invariance, and then to estimate
its extent.

3 EstimatingModels of Random-Walk Time-Variation

In this section we present results based on the Stock and Watson (1996) and Stock
and Watson (1998) TVP-MUB methodology applied to the AR(p) model12

yt = μ+ φ1yt−1 + φ2yt−2 + ...+ φpyt−p + ut (1)

where yt is the rate of growth of labor productivity. We select the lag order, p, based
on the Bayes information criterion, for a maximum possible number of lags P=6.
With a single exception discussed below, concerning the issue of how to tackle the
possible presence of heteroskedasticity in the data–for which we adopt a solution
along the lines of Boivin (2004)–we closely follow Stock and Watson (1996).
Letting θt=[μt, φ1,t, ..., φp,t]

0 and zt=[1, yt−1,t, ..., yt−p,t]0, the time-varying para-
meters version of (1) is given by:

yt = θ0tzt + ut (2)

θt = θt−1 + ηt (3)

with ηt iid N(0p+1, λ
2σ2Q), with 0p+1 being a (p+1)-dimensional vector of zeros;

σ2 being the variance of ut; Q being a covariance matrix; and E[ηtut]=0. Following

12Our choice to work with (time-varying) univariate autoregressions deserves some discussion.
In principle, we could have chosen to work with more sophisticated models along the lines of (eg)
Roberts (2001). In practice, however, there are two issues to take into account. First, in order to
investigate (time-variation in) simple features of a time series–like its persistence, volatility, or,
in the present case, its mean (equilibrium level)–sophisticated models are not needed. The starkest
possible illustration of this is the fact that the Great Stability in the United States was first robustly
identified by Kim and Nelson (1999) and McConnell and Perez-Quiros (2000) based on univariate
methods. A second key justification for our preference for what we would label as a ‘minimalist
econometric approach’ has to do with the fact that, the more complex the model, the greater the
number of possibly questionable assumptions necessarily becomes. Given that, in order to robustly
identify simple stylised facts, complicated models are not needed, it is not clear (at least, to us) why
unnecessary risks should be taken.
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Nyblom (1989) and Stock and Watson (1996, 1998), we set Q=[E(ztz0t)]
−1. Under

such a normalisation, the coefficients on the transformed regressors, [E(ztz0t)]
−1/2zt,

evolve according to a (p+1)-dimensional standard random walk, with λ2 being the
ratio between the variance of each ‘transformed innovation’ and the variance of ut.13

3.1 Searching for random-walk time-variation

Our point of departure is the Hansen (1999) grid bootstrap median-unbiased estimate
of the sum of the autoregressive coefficients, ρ, in (1)–for details, see Hansen (1999).
Conditional on the grid bootstrap estimate of ρ we estimate model (1); we compute
the residuals, ût, and the estimate of the innovation variance, σ̂2; and we perform an
exp- or sup-Wald joint test for a single break at an unknown point the sample in μ
and ρ, using the Newey and West (1987) covariance matrix estimator to control for
possible autocorrelation and/or heteroskedasticity in the residuals. We estimate the
matrix Q as in Stock and Watson (1996) as

Q̂ =

"
T−1

TX
t=1

ztz
0
t

#−1
. (4)

We start by considering a 30-point grid of values for λ over the interval [0, 0.05],
which we call Λ. For each λj ∈ Λ we compute the corresponding estimate of the
covariance matrix of ηt as Q̂j=λ

2
j σ̂
2Q̂, and conditional on Q̂j we simulate model (2)-

(3) 10,000 times as in Stock and Watson (1996, section 2.4), drawing the pseudo
innovations from pseudo random iid N(0, σ̂2). For each simulation, we compute
an exp- or sup-Wald test–without however applying the Newey and West (1987)
correction, obviously–thus building up its empirical distribution conditional on λj.
Based on the empirical distributions of the test statistic we then compute the median-
unbiased estimate of λ as that particular value of λj which is closest to the statistic
we previously computed based on the actual data. In case the exp- or sup-Wald
test statistics computed based on the actual data are greater than the corresponding
medians of the empirical distributions conditional on λj=0.05, we add one more step
to the grid, and we estimate λ as 0.05172. Finally, we compute the p-value based on
the empirical distribution of the test conditional on λj=0.
Table 5 reports the results. Starting from the United States we detect, based on

the simulated p-values, evidence of time-variation at the 10% level for all the series
for output per hour, with the single exception of the nondurables manufacturing
sector (for which, however, MUB estimates of λ are comparatively large based on
either test statistic). Evidence is especially strong, first–and not surprisingly, in the
light of the results reported in section 2–for the overall manufacturing sector; and

13To be precise, given that the Stock-Watson methodology is based on local-to-unity asymptotics,
λ is actually equal to the ratio between τ , a small number which is fixed in each sample, and T , the
sample length.
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second, for the nonfarm business sector, with simulated p-values based on the two
statistics of 0.023 and 0.006, respectively. Results for the output per worker series
are, on the other hand, mixed, with strong evidence of time-variation for the overall
manufacturing sector and for durables production, mixed evidence for non-durables,
and weak evidence for the other sectors. Turning to other countries, for Japan and the
Eurozone we detect weak and very strong evidence, respectively, of time-variation,
and for Australia we identify strong evidence for output per hour in all industries,
weaker evidence–quite surprisingly–for output per hour in the market sector, and
no evidence at all for real GDP per worker, with a MUB estimate of λ being exactly
zero.

3.2 Estimating time-varying equilibrium productivity growth

We now proceed to compute time-varying estimates of equilibrium productivity growth
rates and, crucially, confidence bands around the estimates. We take into account of
both filter and parameter uncertainty via the modification for the problem at hand of
the Hamilton (1986)14 Monte Carlo integration procedure described in Appendix C.
To this purpose, a necessary preliminary step is deconvoluting the probability density
function of λ̂, which we do via the procedure described in Appendix B. Figures 3 and
4 show the deconvoluted PDFs of λ̂, together with the corresponding MUB estimates
of λ, for all the series for which the MUB estimate is greater than zero.
In what follows we present results for all the series for which the MUB estimate of

λ is greater than zero, disregarding therefore the fact that the simulated p-value is,
or is not, smaller than 10%. The key reason for doing so is that a p-value above 10%
should be regarded as significant evidence against time-variation if and only if the
researcher had very compelling reasons for believing in time-invariance. It is not clear
at all, however, why this should be the case–to put it differently, it is not clear why
the hypothesis of time-invariance should be granted such a privileged status–and
in what follows we therefore report results for all series for which empirical evidence
does not manifestly point towards time-invariance.15

Before proceeding further, it is necessary to briefly discuss the main difference
betwen the approach adopted herein and the one found in, e.g., Stock and Watson
(1996), concerning how we tackle the possible presence of heteroskedasticity in the
data. As stressed by Stock (2002) in his discussion of Cogley and Sargent (2002),16

estimating time-varying parameters models without controlling for the possible pres-

14See also Hamilton (1985).
15A second reason is that the MUB point estimate and the simulated p-value should not be

regarded as the only relevant pieces of information. Consider, for example, the case of output per
worker in the U.S. business and nonfinancial corporations sectors. Although the p-values reported in
Table 5 are above 36% for both series, as Figure 4 makes clear a significant fraction of the probability
mass of λ̂ corresponds to comparatively large values of λ. Finally, the pseudo real-time experiment
of section 5 suggests that, in general, p-values possess limited informational content.
16See also Cogley (2005).
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ence of heteroskedasticity causes a systematic overestimation of the authentic extent
of coefficients’ drift, as the imposition of a constant covariance structure forces the
time-varying parameters to ‘pick up’ part of the variation in the data originating
from time-variation in the covariance. In what follows we adopt a solution along the
lines of Boivin (2004), testing for multiple structural breaks at unknown points in the
sample in the innovation variance in equation (1),17 based on either the exp- or the
sup-Wald test statistics, and the Bai (1997a) method of estimating multiple breaks
sequentially, one at a time,18 bootstrapping the critical values as in Diebold and Chen
(1996), and imposing 15% symmetric trimming. Finally, we compute confidence in-
tervals for estimated break dates as in Bai (1997b). Results based on the exp-Wald
statistic are shown in Table 3:19 we detect volatility breaks for only five series, output
per hour and per worker in the U.S. nonfarm business and business sectors, and real
GDP per hour in the Eurozone.
Based on the median-unbiased estimates of λ, on the deconvoluted PDFs of λ̂, and

on the estimated breaks in the innovation variance, we then estimate time-varying
equilibrium rates of labor productivity growth, and confidence bands around the
estimates, by taking into account of both parameter and filter uncertainty via the
Monte Carlo integration procedure described in Appendix C. Figure 5-7 show the
results.

3.2.1 Evidence for the United States

Starting from output per hour (Figure 5), results for the nonfarm business sector–
traditionally regarded as the ‘bellweather series’ for U.S. productivity studies–well
accord with conventional wisdom, pointing towards

• a former golden era of comparatively high productivity growth, until the first
half of the 1960s, with our preferred measure of trend growth–the median
of the distribution of γt|T ≡ μt|T/(1-φ1,t|T -...-φp,t|T )≡ μt|T/(1-ρt|T ), computed

based on the deconvoluted PDF of λ̂–20estimated between 2.5% and 2.7%;

17As stressed by Boivin (2004, footnote 16), the estimation of different variances for different
sub-samples is indeed ‘entirely consistent with the TVP specification, asymptotically’, given the
assumption of local-to-zero time variation. Although Boivin (2004) considered a single break–
estimating two different variances for the pre-Volcker and post-1979 periods–his approach is entirely
appropriate also in the case of multiple breaks. (I wish to thank Mark Watson for confirming this
to me.)
18An alternative would have been to adopt a Bayesian approach, which would have allowed us to

model time-variation in the innovation variance via a stochastic volatility model along the lines of,
e.g., Jacquier, Polson, and Rossi (2004). We have preferred to adopt the present, Classical approach
as the adoption of a Bayesian perspective would have compelled us to specify a prior for the extent
of random-walk drift, which we want instead to entirely estimate from the data.
19Results based on the sup-Wald statistic are identical, and are not reported here, but are available

from the author upon request.
20The reason why this is our preferred estimate is because–different from the one conditional on
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• a marked slowdown from the first half of the 1960s up to around 1980, with
equilibrium productivity growth estimated to have fallen to 1.8% in 1980:2;

• a period of stagnation, the 1980s, with trend growth fluctuating between 1.8%
and 2.0%; and

• a growth resurgence–first tentative, and then, since mid-1990s, literally explosive–
starting from the beginning of the 1990s, with equilibrium growth estimated,
for the latest quarter of our sample, 2005:4, at 2.7%. Interestingly, evidence
clearly points towards the productivity acceleration to have reached a plateau
over the last few years.

Quite intriguingly, 2.7% is very close to to the numerical estimate recently ob-
tained for the non-farm business sector by Jorgenson, Ho, and Stiroh (2004), 2.6%,
based on a completely different methodology, growth accounting.2122

Results for the business sector are (not surprisingly) broadly in line with those for
the nonfarm business sector–in particular, the evidence of a plateau in trend growth
reached over the most recent years is even slight clearer–with the main difference
being the steady and consistent deceleration in trend growth from the beginning of
the sample up until around 1980. After fluctuating around 2.3% until the beginning
of the 1990s, equilibrium growth is estimated to have strongly accelerated over the
following years, reaching, in 2005:4, 2.7%.23

Evidence for nonfinancial corporations is qualitatively, although not quantita-
tively, in line with that discussed so far, with a U-shaped evolution of trend growth
over the post-WWII era, the main differences being (i) a smaller extent of variation
from the beginning of the sample until the end of the 1980s, with the minimum and
the maximum of trend growth estimated at 1.7% and 2.3%, respectively; (ii) a much
stronger acceleration since the beginning of the 1990s, with trend growth increasing
from 2.0% in 1990:1 to 3.2% in the last quarter of the sample, 2003:3; and (iii) no
evidence of a plateau reached over the most recent period. Under this respect, how-
ever, it is important to stress how, given the shorter sample period, these results

the TVP-MUB estimates of λ–it takes into account of all possible sources of uncertainty. Estimates
conditional on the TVP-MUB estimates of λ are however, in general, very close to the median
estimates, and are available upon request.
21At first sight, our estimates may appear not to be comparable with the Jorgenson-Ho-Stiroh

ones, which are forward-looking–specifically they are projections for trend productivity growth in
the nonfarm busines sector over the next decade. It is important to stress, however, that given the
nature of the Stock-Watson TVP-MUB method used herein, which is based on the assumption of
random-walk time-variation, the most recent estimate is automatically a projection into the infinite
future, so that our estimates and the Jorgenson-Ho-Stiroh ones are exactly comparable.
22Jorgenson et al.’s estimates are based on the 2004:2 data vintage. In two previous versions of

this work, based on the 2004:3 and 2005:2 data vintages, we estimated equilibrium productivity
growth in the non-farm business sector at 2.6% in both cases.
23These results are therefore in line with those based on the Bai-Perron methodology discussed in

section 2.2, and with Fernald’s (2005).
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are strictly speaking not incompatible with those for the nonfarm business and the
business sectors.
Turning to manufacturing, the main findings emerging from the bottom row of

Figure 5 are

• a dramatic productivity acceleration in the overall manufacturing sector starting
around 1990, with trend growth increasing from 3.0% in 1990:1 to 4.6% in
2005:4,24 and clear evidence of a plateau reached since about 2003; and

• significant differences between the durables and nondurables goods sectors, with
trend growth for nondurables increasing from 2.1% in 1990:1 to 2.7% in 2005:4,
and with the corresponding figures for the production of durables being 3.5%
and 5.8%, respectively.25

Let’s now turn to output per worker (Figure 6). Given that the MUB estimate of
λ for the nonfarm business sector is exactly zero, the figure only reports evidence for
the other five series. For each series, the overall identified pattern of change closely
mimics the one for the corresponding series in Figure 5, but, not surprisingly, with
significantly less variation. For the business sector, for example, trend growth is
estimated to have been equal to 2.6% at the beginning of the sample, to have decreased
to a minimum of 2.1% in 1988:4, and to have increased to 2.4% in the last quarter of
the sample, 2003:4, with the corresponding figures for output per hour being 3.2%,
2.1%, and 2.7% respectively. Results for the other series exhibit even less time-
variation, with the minimum and the maximum of trend growth being 1.7% and 2.3%,
respectively, for nonfinancial corporations, and 2.2% and 2.5% for the nondurables
manufacturing sector.
Finally, a point worth stressing is that although, up until now, we have uniquely

focussed on median point estimates, as the figures clearly show, the extent of un-
certainty associated with these estimates–once taking into account of both filter
and parameter uncertainty–is quite substantial. Focussing on output per hour in
the nonfarm business sector, for example, the width, in percentage points, of a 90%-
coverage confidence band was equal to 1.6 at the beginning of the sample, it decerased
to a minimum of 1.2 around 2000, and it increased, again, to 1.6 at the very end of
the sample.

3.2.2 Evidence for other countries

Turning to other countries, results for the Eurozone need no comment–the first
column of Figure 7 already speaks volume. Consistent with the ‘Eurosclerosis’ con-
24At first blush 4.6% may appear as implausibly high. It is therefore worth stressing that the

simple average of the annualised quarter-on-quarter rate of growth of output per hour in the overall
manufacturing sector has been equal, since 2000:1, to 4.9% ...
25Again, 5.8% may appear as absurdly high. Again, it is worth stressing that the simple average of

the annualised quarter-on-quarter rate of growth of output per hour in the durables manufacturing
sector has been equal, since 2000:1, to 6.1%.
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ventional wisdom, results based on either real GDP per hour or real GDP per worker
point towards a collapse since the beginning of the 1980s and of the 1970s, respec-
tively. Equilibrium growth of output per hour is estimated to have fallen from 2.3%
in 1980:3 to a minimum (so far) of 0.9% in 2004:4, with the corresponding figures for
output per worker being 3.0% in 1970:3, and 0.7%, in 2003:4.
Consistent with the comparatively large p-values reported in Table 5, evidence for

Japan–either per hour or per worker–consistently points towards very little time-
variation over the sample period, with trend GDP per hour fluctuating between a
minimum of 1.9% and a maximum of 2.0%, with the corresponding figures for GDP
per worker being 1.3% and 1.6%.
Finally, in Australia trend productivity growth has clearly accelerated, since the

beginning of the 1980s, in the market sector, with the estimated equilibrium going
from 1.6% in 1978:3 to 2.3% in 2004:3. Output per hour in the whole economy, on
the other hand, first, appears as much less dynamic, fluctuating between a minimum
of 1.3% and a maximum of 2.0%. And second, its trend appears, overall, as much less
clear, with growth ‘sputtering along’ until the beginning of the 1990s, then increasing
until about 1997, and slightly decreasing ever since.

4 Why Do Break Tests Identify So Little Evidence
of Time-Variation? AMonte Carlo Investigation

Conceptually in line with Cogley and Sargent (2005), in section 2 we conjectured that
break tests’ failure to identify much evidence of time-variation may originate from
the fact that historical changes in equilibrium productivity growth may have been
too gradual to be detectable via such a comparatively ‘crude’ methodology.26 In this
section we provide some tentative evidence on the plausibility of this conjecture via
the following Monte Carlo experiment.
We consider three series for which break tests did not detect evidence of time-

variation, but for which the TVP-MUB methodology did identify random-walk time-
variation at (at least) the 10% level based on either the exp- or the sup-Wald test
statistics. The three series are output per hour in the U.S. nonfarm business and
nonfinancial corporations sectors, and Australia’s output per hour in all industries.
Based on the DGPs we estimated in section 3 via the TVP-MUB methodology we
then generate, for each series, 1,000 artificial samples of length equal to the sample
length of the corresponding actual series,27 and for each simulation (i) we perform

26Cogley and Sargent (2005) report the following values for the power of the test for the equations
for the nominal rate, unemployment, and inflation in their Bayesian time-varying parameters VAR.
Andrews (1993)’s sup-LM test: 0.136, 0.172, and 0.112. Nyblom (1989)-Hansen (1992) test: 0.076,
0.170, 0.086. Andrews (1993)’s sup-Wald test: 0.173, 0.269, 0.711.
27Actually, letting T be the sample length of the actual series, we generate artificial samples of

length T+100, and we then discard the first 100 observations.
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an Andrews-Ploberger exp-Wald test for a single break at an unknown point in the
sample in the mean (i.e., exactly the same break test we performed in section 2.1), and
(ii) we test for multiple breaks in the mean based on the Bai-Perron methodology.
In both cases we bootstrap the critical values as in Diebold and Chen (1996), setting
the number of bootstrap replications to 1,000, exactly as in section 2.
Table 7 reports, for each series, the fraction of times that the null of time—

invariance gets rejected based on the exp-Wald and, respectively, Bai and Perron’s
WDmax test statistics.28 As the table makes clear, state-of-the-art break tests fail to
reject the (incorrect) null of no time-variation a significant fraction of the times. In
the case of the U.S. nonfarm business sector, for example, time-invariance is rejected
less than two times out of five based on theWDmax statistic, and even less, one time
out of three, based on the exp-Wald statistic. Although these results ought necessar-
ily to be regarded as preliminary, taken together with those produced by Cogley and
Sargent (2005) they provide tentative evidence that our conjecture may indeed be
correct. If that’s the case, a necessary corollary is that, in order to investigate time-
variation in labor productivity growth, break tests are not the way to go, and that
models of random-walk time variation may provide a more appropriate description of
reality.

5 Back to the Future: Computing Pseudo-Real-
Time Estimates of EquilibriumProductivity Growth

Suppose that the Great Inflation truly resulted from the Fed’s inability to detect,
in real time, the productivity slowdown, and further assume that James Stock and
Mark Watson had been magically catapulted into the Federal Reserve Board during
the first half of the 1970s.29 Would they have been able, by applying the TVP-MUB
methodology, to save the day?
Figure 8 provides some (admittedly, extremely tentative) evidence on this, by

showing results from recursively applying the Stock-Watson’s TVP-MUB method-
ology to the rates of growth of output per hour in the U.S. nonfarm business and
business sectors, for every quarter out of four starting from 1970:4. The methodology
we apply is exactly the same we discussed in section 3: for every recursive sample
(i) we compute the MUB estimate of λ based on the exp-Wald test statistic, exactly
as in section 3.1; (ii) we perform multiple break tests in the innovation variance as
described in section 3.2; and (iii) we compute median estimates of trend growth,
and 90% confidence bands, as in section 3.2. One obvious limitation of the present
experiment is that, being based on revised data, is only pseudo real-time. Unfortu-
nately, the real-time dataset used in Edge, Laubach, and Williams (2004), generously
provided to us by John Williams, only contains annual data, making it impossible

28Results based on the UDmax statistic are near-identical, and are available upon request.
29Maybe, in a plutonium-powered DeLorean.
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to apply to it a ‘data hungry’ methodology like the TVP-MUB one. Unwillingly, we
have therefore decided to perform our experiment based on revised data.
For either series, the bottom row of figure 8 shows, for each quarter out of four (1)

the pseudo real-time median estimate of equilibrium productivity growth, together
with the 90% confidence bands, computed conditional on the recursive sample ending
in that quarter (the thicker lines);30 and (2) the median estimates, together with the
90% confidence bands, conditional on the full samples up to 2005:4, i.e., exactly the
same objects plotted in the first two panels of the top row of Figure 5 (the thinner
lines). The top row of Figure 8, on the other hand, shows, for either series, and for
each quarter out of four, recursive MUB estimates of λ, and recursively computed
simulated p-values for the null hypothesis of no time-variation.
Quite strikingly, the evidence reported in Figure 8 suggests that the recursive

application of the TVP-MUB methodology starting from the beginning of the 1970s
would have most likely failed to detect the productivity slowdown in real time. In
particular, the figure clearly shows how

• simulated p-values stay quite remarkably high until the beginning of the 1980s,
thus providing further evidence on their comparatively low informational con-
tent. (This provides a further justification for our decision, in section 3.2, to
report results for all series for which the MUB estimate of λ is strictly greater
than zero.)

• For the nonfarm business sector, the MUB estimate of λ is consistently equal
to zero until the very end of the 1970s, while for the business sector it is equal
to zero about one-third of the times.

• Crucially, the bottom panels show how, assuming the thin lines to represent the
‘truth’,31 for either series pseudo real-time estimates would have consistently
missed it until the very beginning of the 1980s. As the figure shows, the extent
of over-estimation of trend productivity growth during the 1970s is definitely
not negligible, with, in the case of the business sector, pseudo real-time median
estimates even breaching, several times, the ‘true’ 90% upper band.

Results for the period since the beginning of the 1980s do not provide much reas-
surance on the ability of the best available econometric techniques to provide reliable
aid to policymakers, with the recursive trend growth estimates staying, most of the
times, quite far away from those conditional on the entire sample. The productivity

30In order to avoid confusion, the recursively computed 90% confidence interval for quarter t is
computed by first getting the confidence bands for the recursive sample ending at t (via the Monte
Carlo integration procedure we already discussed), and then simply by taking, from these bands,
the last observation, i.e. the one corresponding to quarter t. We compute these confidence bands
via Monte Carlo integration even in the case in which the MUB estimate of λ is exactly zero, by
drawing from the deconvoluted PDF as described in appendix C.
31Needless to say, quite a leap of faith.
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resurgence of the 1990s, in particular, appears as especially intriguing, as it clearly
represents, for both series, a mirror image of the productivity slowdown of the 1970s.
Exactly as in the 1970s the TVP-MUB methodology consistently overestimated the
authentic trend growth rate, during the 1990s it consistently underestimated it, catch-
ing up with reality only at the very end of the sample.
There is no need to repeat, once again, the obvious limitations of the present

exercise–in particular, its pseudo real-time nature. Even with these limitations,
however, we believe that these results suggest the need to use some caution in applying
even the very best available econometric techniques to policymaking.

6 How Large Is the Permanent Component of La-
bor Productivity Growth?

Having detected evidence of random-walk time-variation for several series, a natural
question to ask is then: ‘How large is the permanent component of labor productivity
growth?’ To put it differently, what fraction of the quarter-on-quarter change in the
rate of growth of labor productivity should be regarded as permanent? In order to
answer this question, in this section we present results based on Cochrane (1988)’s
variance ratio

Vk = k−1
Var (yt − yt−k)

Var (yt − yt−1)

T

T − k + 1
(5)

which we estimate via

V̂k =
T

T − k + 1

"
1 + 2

k−1X
j=1

k − j

k
ρ̂j

#
(6)

where the ρ̂j’s are the sample autocorrelations of the first difference of yt. We con-
struct confidence intervals for V̂k via the non-parametric spectral bootstrap procedure
described in Appendix D. Given that variance ratio estimators strive to estimate a
characteristic–the size of the unit root–pertaining to the infinite long-run of a se-
ries, we only consider series with at least 40 years of observations. In practice, this
compels us to uniquely focus on the series for output per hour and per worker in the
U.S. nonfarm business, business, and non-financial corporations sectors.
Figure 9 shows, for the seven series, the median, the mean, and the 90% upper and

lower percentiles of the bootstrapped distributions of V̂ ∗k at horizons from 1 quarter to
20 years, while Table 8 reports V̂k, together with the median, the mean, and the 90%
upper and lower percentiles of the bootstrapped distribution of V̂ ∗k , at the 20-year
horizon. As the figure makes clear, for all series both the median and the mean of the
bootstrapped distribution of V̂ ∗k become essentially flat at the 20-year horizon, thus
clearly suggesting that variance ratio estimates have ‘stabilised’. Results in Table
8 clearly show how, in both countries, a non-negligible fraction of the quarter-on-
quarter change in the rate of growth of output either per hour or per worker should
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be regarded as permanent, with 90%-coverage confidence intervals ranging between
[1.8; 6.3] in the U.S. business sector to [2.8; 9.0] in the U.S. nonfinancial corporations
sector. The immediate, obvious implication of these finding for monetary policy is
that the problems arising from changes in the rate of productivity growth discussed
by Orphanides within the context of the U.S. Great Inflation of the 1970s should be
regarded as part of the normal ‘macroeconomic landscape’, i.e. of the normal set of
problems central banks have to worry about–at least, in the United States and the
United Kingdom.

7 Conclusions

What message(s) should a policymaker take from this paper? Essentially three, we
believe.

• First, equilibrium (trend) labour productivity growth should be regarded, in
general, as time-varying.

• This leads us to a second crucial point. Given that, when changes in trend
productivity growth do take place, even the very best available econometric
techniques may turn out to be of limited help to policymakers, this naturally
suggests the necessity of supplementing such techniques with any possible piece
of additional evidence, anecdotal or otherwise.

• When time-variation in equilibrium productivity growth does take place, it is
most likely to take place gradually–ie without sudden jumps–so that the best
way of analysing it is via time-varying parameters models, rather than via break
tests.
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A The Data

A.1 United States

Seasonally adjusted quarterly series for output per hour of all persons in the nonfarm
business sector (acronym: OPHNFB), in the business sector (acronym: OPHPBS),
and in the manufacturing sector (OPHMFG) are from the U.S. Department of Labor,
Bureau of Labor Statistics. The sample periods are 1987:1-2005:4 for the manufactur-
ing sector, and 1947:1-2005:4 for the other two series. Seasonally adjusted quarterly
series for output per hour for nonfinancial corporations, manufacturing durable goods
sector, and manufacturing nondurable goods sector are from the Center for the Study
of Innovation and Productivity’s (henceforth, CSIP) website at the Federal Reserve
Bank of San Francisco. The sample periods are 1958:1-2003:3 for nonfinancial corpo-
rations, and 1987:1-2003:4 for the two other series.
Seasonally adjusted quarterly series for output per worker in the nonfarm business,

business, nonfinancial corporations, manufacturing, manufacturing durable goods,
and manufacturing nondurable goods sectors are all from the CSIP’s website. The
sample periods are 1947:1-2003:4 for the nonfarm business and business sectors;
1958:1-2003:3 for the nonfinancial corporations sector; and 1987:1-2003:4 for the three
other series.

A.2 Eurozone

A quarterly seasonally adjusted series for real GDP per hour worked has been com-
puted as the ratio between the synthetic euro-area real GDP series from the ECB’s
Area Wide Model database, and an interpolated quarterly series for overall hours
worked in the eurozone, which has been kindly provided by the European Central
Bank.32 The sample period is 1980:1-2004:4. A quarterly seasonally adjusted series
for real GDP per worker has been computed as the ratio between the synthetic real
GDP and employment series from the from the ECB’s Area Wide Model database.
The sample period is 1970:1-2004:4.

A.3 Australia

Two quarterly seasonally adjusted series for output per hour worked, for the whole
economy and the market sector respectively, have been kindly provided by Ivan
Roberts of the Reserve Bank of Australia. The sample period is 1978:1-2004:3. A
quarterly seasonally adjusted series for real GDP per worker has been computed as
the ratio between real GDP and employment series from the IMF ’s International
Financial Statistics. The sample period is 1982:3-2005:2.

32Interpolation has been performed via the Chow and Lin (1971) procedure.
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A.4 Japan

Seasonally adjusted real GDP per worker, and real GDP per hour worked series have
been computed based on data for real GDP, employment, and hours kindly provided
by Ryo Kato of the Bank of Japan. The sample period is 1980:1-2004:3 for both
series.

B Deconvoluting the Probability Density Function
of λ̂

This appendix describes the procedure we use in section 3.2 to deconvolute the prob-
ability density function of λ̂. To fix ideas, let’s start by considering the construction
of a (1-α)% confidence interval for λ̂, [λ̂

L

(1−α), λ̂
U

(1−α)], and let’s assume, for the sake of

simplicity, that λj and λ̂ can take any value over [0; ∞). Given the duality between
hypothesis testing and the construction of confidence intervals, the (1-α)% confidence
set for λ̂ comprises all the values of λj that cannot be rejected based on a two-sided
test at the α% level. Given that an increase in λj automatically shifts the PDF of L̂j

conditional on λj upwards, λ̂
L

(1−α) and λ̂
U

(1−α) are therefore such that

P
³
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Let φλ̂(λj) and Φλ̂(λj) be the probability density function and, respectively, the cu-
mulative probability density function of λ̂, defined over the domain of λj. The fact

that [λ̂
L

(1−α), λ̂
U

(1−α)] is a (1-α)% confidence interval automatically implies that (1-α)%

of the probability mass of φλ̂(λj) lies between λ̂
L

(1−α) and λ̂
U

(1−α). This in turn implies

that Φλ̂(λ̂
L

(1−α))=α/2 and Φλ̂(λ̂
U

(1−α))=1-α/2. Given that this holds for any 0<α<1,
we therefore have that

Φλ̂(λj) = P
³
L̂j > L̂ | λj

´
(B3)

In this way, based on the exp-Wald test statistic, L̂, and on the simulated distributions
of the L̂j’s conditional on the λj’s in Λ, we obtain an estimate of the cumulative
probability density function of λ̂ over the grid Λ, let’s call it Φ̂λ̂(λj). Finally, we fit a
logistic function to Φ̂λ̂(λj) via non-linear least squares and we compute the implied
estimate of φλ̂(λj)–call it φ̂λ̂(λj)–scaling its elements so that they sum to one.
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C TheMonte Carlo Integration Procedure for Com-
puting Confidence Bands for the Estimated State
Vector

This appendix describes the procedure we use in section 3.2 to compute confidence
bands for estimated time-varying equilibrium levels of labor productivity growth tak-
ing into account of both parameter and filter uncertainty. The procedure is an adap-
tation to the case at hand of the Monte Carlo integration procedure proposed by
Hamilton (1985, 1986).
The first step consists in integrating out parameter uncertainty, i.e. uncertainty

pertaining to the true values of λ, σ2, and of Ω ≡ [σ21, σ22, ..., σ2k]0, the vector of the
volatilities for the identified sub-periods. Let λ̂ and φ̂λ̂(λj) be the median-unbiased
estimate of λ and its estimated deconvoluted discretised probability density function,
respectively; let σ̂2OLS be the OLS estimate of σ

2; let Ω̂OLS be the OLS estimate of
Ω; and let θ̂OLS and V̂ (θ̂OLS) be the Hansen (1999) grid bootstrap MUB estimate of
θ in (1)–where θ is defined as θ=[μ, φ1, ..., φp]

0–and its Newey and West (1987)
estimated covariance matrix. We take 10,000 draws from φ̂λ̂(λj)–let’s define the i-th
draw as λ̃i–and for each of them we do the following.

• If λ̃i>0, we get a draw σ̃2=[(T -p-1)σ̂2OLS]/χ
2
T−p−1, and we compute the covari-

ance matrix of ηt in (3) as λ̃
2

i σ̃
2Q̂. For each of the σ̂2j in Ω̂OLS, we then get

a draw σ̃2j=[(Tj-p-1)σ̂
2
j ]/χ

2
Tj−p−1, thus getting the vector Ω̃ for the simulated

volatilities for each of the identified sub-periods. Conditional on λ̃
2

i σ̃
2Q̂ and Ω̃,

we run the Kalman filter and smoother for (2)-(3), thus getting estimates of
the state vector and of its precision matrix at each t, θit|τ and P

i
t|τ , respectively,

with τ=t for one sided estimates, and τ=T for two-sided ones.

• If λ̃i=0, we simply set θit|τ=θ̂OLS and P i
t|τ=V̂ (θ̂OLS) for each t, with τ=t, T .

Finally, for each t we take the mean across the 10,000 draws for both θit|τ and
P i
t|τ , τ=t, T–let’s define them as θ̄t|τ and P̄t|τ , respectively–thus integrating out
uncertainty about λ and Ω.
The second step then consists in quantifying the extent of filter uncertainty, which

we do by repeating the following 10,000 times. For each t from p+1 to T , draw from
MN(θ̄t|τ , P̄t|τ ), τ=t, T , where MN(h,H) is a multivariate normal distribution with
mean h and covariance matrix H. Call this draw θkt|τ . Based on θkt|τ , compute the
time-varying mean of the series, γkt|τ ≡ μkt|τ/(1-ρ

k
t|τ ). Based on the distribution of the

γkt|τ ’s, we then compute both a median estimate of γ (the black lines in Figures 5-7),
and 90% confidence bands around the median. Finally, based on a single pass of
the Kalman filter and smoother conditional on the MUB estimate of λ and the OLS
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estimate of Ω, we compute the ‘traditional’ estimate of γ found in most applications
of the Stock-Watson methodology–see, e.g. Roberts (2001)–which abstracts from
parameter uncertainty.

D Computing Confidence Intervals for Cochrane’s
Variance Ratio Estimator via Spectral Boot-
strapping

This appendix describes the spectral bootstrapping procedure we use in section 6 to
compute confidence intervals for Cochrane’s (1988) variance ratio estimator. Let x̃t be
the discrete Fourier transform of ∆yt, i.e. x̃t=a(ωj)-ib(ωj), where i is the imaginary
number, the ωj’s are the Fourier frequencies, and a(ωj) and b(ωj) are the Fourier
coefficients corresponding to the Fourier frequency ωj. As it is well known (see, e.g.,
Brillinger (1981))

a(ωj)p
f (ωj)

,
b(ωj)p
f (ωj)

asy→ iid N(0, 1/2) (D1)

where f (ωj) is the spectral density of ∆yt. Following Berkowitz and Kilian (2000),
we generate pseudo-Fourier coefficients according to

a∗(ωj) =

q
f̂ (ωj)za(ωj) b∗(ωj) =

q
f̂ (ωj)zb(ωj) (D2)

where f̂ (ωj) is a consistent, i.e., smoothed, estimator of the spectral density of
∆yt,33 and za(ωj) and zb(ωj) are iid N(0, 1/2). We then inverse-Fourier transform
x̃∗t=a

∗(ωj)-ib∗(ωj), thus getting artificial, boostrapped x̃∗t ’s, and based on them we
compute boostrapped V̂ ∗k , thus building up the empirical distribution of V̂k. In what
follows we use 10,000 bootstrap replications. Finally, we compute the α% confidence
bands based on the α/2 and (1-α)/2 quantiles of the empirical distribution of the V̂ ∗k .
In order to gauge an idea of the coverage properties of the proposed spectral

bootstrap procedure, we perform a simple Monte Carlo experiment based on the
ARIMA(0,1,1) process ∆yt = ut + θut−1. It can be easily shown that for such a
process the variance ratio at horizon k is equal to:

Vk = 1 + 2k
−1 (k − 1) θ(1 + θ2)−1 (D3)

which, for k→∞, converges to V∞=1+2θ(1+θ2)−1, equal to the fraction of the vari-
ance of ∆yt due to the innovation in the permanent component within the Beveridge-
Nelson decomposition. We consider values of θ such as to give rise to three values

33We estimate f̂ (ωj) by smoothing the periodogram in the frequency domain by means of a
Bartlett spectral window. Following Berkowitz and Diebold (1998), we select the bandwidth auto-
matically via the procedure introduced by Beltrao and Bloomfield (1987).
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of V∞, 0.2, 1–corresponding to the case of a pure random walk–and 1.5. For
any of them we first derive the distribution of Cochrane’s variance ratio estimator–
expression (6) in the text–at horizons up to 80 quarters, based on 10,000 replications
of the process, for simulated samples of length 160 quarters. The first row in figure 5
shows, for any of the three values of V∞, the median and the mean of the simulated
distribution of V̂k, the upper and lower 90% percentiles, and the theoretical value
of Vk based on (C3). We then simulate the process 1,000 times, and based on each
simulation we compute the upper and lower 90% confidence bands for the estimate
of Vk based on the previously described spectral bootstrapping procedure (we set
the number of bootstrapping replications to 1,000), thus building up their empirical
distributions. The second row of figure 5 reports the upper and lower 90% percentiles
of the simulated distribution of V̂k–the same shown in the corresponding panels in
the first row–together with the means of the distributions of the bootstrapped upper
and lower 90% confidence bands. A comparison between the simulated percentiles of
the distribution of Vk and the means of the distributions of the bootstrapped con-
fidence bands–i.e., confidence bands’s expected values–allows us to get an idea of
the accuracy of the proposed procedure. As the three panels in the second row show,
the accuracy of the approximation is quite good not only at the 20-year horizon, but
also at shorter horizons, with the partial exception of the V∞=0.2 case.
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Table 1 Tests for multiple breaks at unknown points in the
sample in the mean based on Andrews and Ploberger (1994)
and Bai (1997a)

exp-Wald
Break dates and 90% (bootstrapped Mean
confidence intervals p-value)a Sub-periods (standard error)

(a) Output per hour
United States, output per hour, business sector:

1966:2 [1966:25; 1966:3] 2.37 (0.057) 1947:2-1966:1 3.48 (0.42)
1966:2-2005:4 2.06 (0.25)

United States, output per hour, manufacturing sector, overall:
2001:4 [2001:3; 2002:1] 7.16 (0.038) 1987:2-2001:3 3.23 (0.36)

2001:4-2005:4 5.77 (0.46)
Eurozone, real GDP per hour:

1995:2 [1995:1; 1995:3] 9.00 (0.008) 1980:2-1995:1 2.33 (0.18)
1995:2-2004:4 0.93 (0.23)

(b) Output per worker
Eurozone, real GDP per worker:

1977:1 [1976:4; 1977:3] 8.21 (0.011) 1970:2-1976:4 3.61 (0.62)
1998:1 [1997:4; 1998:2] 10.94 (0.009) 1977:1-1997:4 1.80 (0.18)

1998:1-2004:4 0.59 (0.24)
a p-values have been bootstrapped as in Diebold and Chen (1996).
All other series, no identified break date.
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Table 2 Tests for multiple breaks at unknown points in
the sample in the mean based on Bai and Perron (1998):
double maximum tests, and bootstrapped p-valuesa

UDmax WDmax
United States, output per hour:

nonfarm business sector 6.81 (0.161) 7.64 (0.153)
business sector 8.02 (0.073) 8.99 (0.059)

nonfinancial corporations 12.54 (0.224) 12.54 (0.299)
manufacturing 13.65 (0.064) 13.65 (0.091)

manufacturing, durables 14.03 (0.242) 14.03 (0.306)
manufacturing, non durables 2.99 (0.642) 3.56 (0.630)

United States, output per worker:
nonfarm business sector 4.68 (0.618) 5.25 (0.662)

business sector 7.34 (0.183) 7.34 (0.258)
nonfinancial corporations 10.50 (0.369) 11.77 (0.395)

manufacturing 7.05 (0.708) 7.53 (0.755)
manufacturing, durables 10.64 (0.424) 10.64 (0.519)

manufacturing, non durables 1.81 (0.933) 2.45 (0.91)
Eurozone, real GDP:

per hour 13.12 (0.001) 13.12 (0.002)
per worker 16.81 (0.02) 18.84 (0.013)

Japan, real GDP:
per hour 3.84 (0.096) 3.84 (0.148)

per worker 6.98 (0.135) 7.82 (0.135)
Australia:
output per hour, market sector 1.93 (0.889) 3.08 (0.754)
output per hour, all industries 2.47 (0.452) 3.95 (0.195)

real GDP per worker 4.31 (0.678) 4.83 (0.73)
a p-values have been bootstrapped as in Diebold and Chen (1996).
Asymptotic 10% critical values are 7.46 for the UDmax and 8.20 for
the WDmax test statistics.

27



Table 3 Tests for multiple breaks at unknown points in the sample in the mean
based on Bai and Perron (1998): sup-F( +1| ) test statistics, and bootstrapped
p-valuesa

Estimated
F (2|1) F (3|2) F (4|3) break dates

United States, output per hour:
business sector 7.17 (0.055) 2.12 (0.339) 0.30 (0.856) 1973:1; 1997:1

manufacturing sector, overall 4.26 (0.465) 0.64 (0.944) 0.37 (0.841) 2001:3
Eurozone, real GDP:

per hour 3.08 (0.355) 1.41 (0.498) 1.10 (0.321) 1995:1
per worker 12.67 (0.026) 1.56 (0.706) 5.27 (0.028) 1976:4, 1997:4

a p-values have been bootstrapped as in Diebold and Chen (1996). Asymptotic 10% critical values
are 8.51, 9.41, and 10.04.

Table 4 Tests for multiple breaks at unknown points in the sample
in the mean based on Bai and Perron (1998): estimated mean pro-
ductivity growth by sub-sample
United States, output per hour:

business sector 1947:2-1972:4 1973:1-1996:4 1997:1-2005:4
3.29 (0.35) 1.65 (0.31) 3.06 (0.27)

manufacturing sector, overall 1987:2-2001:2 2001:3-205:4
3.28 (0.37) 5.79 (0.49)

Eurozone, real GDP:
per hour 1980:2-1994:4 1995:1-2004:4

2.34 (0.19) 0.95 (0.23)
per worker 1970:2-1976:3 1976:4-1997:3 1997:4-2004:4

3.49 (0.62) 1.85 (0.19) 0.67 (0.22)
Newey and West (1987) standard errors in parentheses.
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Table 5 Results based on the Stock-Watson TVP-MUB methodology:
exp- and sup-Wald test statistics, simulated p-values, and median-
unbiased estimates of λ

exp-Wald sup-Wald

(p-value) λ̂ (p-value) λ̂
United States, output per hour:

nonfarm business sector 4.16 (0.023) 0.03103 16.84 (0.006) 0.03793
business sector 2.52 (0.095) 0.01897 10.00 (0.085) 0.02069

nonfinancial corporations 2.96 (0.088) 0.02931 13.14 (0.045) 0.04138
manufacturing sector 8.53 (0.001) 0.05172 23.20 (0.001) 0.05172

manufacturing sector, durables 5.97 (0.008) 0.05172 16.55 (0.011) 0.05172
manufacturing sector, non durables 1.89 (0.211) 0.04828 8.18 (0.158) 0.05172
United States, output per worker:

nonfarm business sector 0.75 (0.708) 0 3.58 (0.788) 0
business sector 1.26 (0.404) 0.00690 6.14 (0.384) 0.00862

nonfinancial corporations 1.36 (0.397) 0.00862 6.73 (0.369) 0.01034
manufacturing sector 4.69 (0.023) 0.05172 16.81 (0.009) 0.05172

manufacturing sector, durables 4.69 (0.023) 0.05172 16.77 (0.011) 0.05172
manufacturing sector, non durables 5.27 (0.015) 0.05172 6.90 (0.255) 0.04138
Eurozone, real GDP:

per hour 14.048 (0) 0.05172 32.92 (0.001) 0.05172
per worker 9.15 (0.001) 0.05172 24.85 (0) 0.05172

Japan, real GDP:
per hour 1.12 (0.454) 0.01379 4.87 (0.500) 0.00345

per worker 1.19 (0.442) 0.01552 6.27 (0.326) 0.02586
Australia:

output per hour, market sector 2.08 (0.165) 0.03448 7.40 (0.210) 0.03103
output per hour, all industries 16.84 (0) 0.05172 42.26 (0.000) 0.05172

real GDP per worker 0.73 (0.693) 0 4.48 (0.605) 0
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Table 6 Tests for multiple breaks at unknown points in the sample
in the innovation variance based on Andrews-Plobergera (1994) and
Bai (1997a)
Break dates and 90% exp-Wald Variance,b and 90%
confidence intervals (p-value) Sub-periods confidence interval

(a) Output per hour
United States, output per hour, nonfarm business sector:

1983:3 [1973:3; 1993:3] 7.79 (0) 1947:2-1983:2 1.02 [8.8E-1; 1.19]
1983:3-2005:4 0.38 [3.3E-1; 0.45]

United States, output per hour, business sector:
1982:2 [1973:2; 1991:2] 9.82 (0.001) 1947:2-1982:1 1.12 [9.7E-1; 1.31]

1982:2-2005:4 0.38 [3.3E-1; 0.45]
(b) Output per worker

United States, output per worker, nonfarm business sector:
1983:4 [1975:4; 1991:4] 11.23 (0) 1947:2-1983:3 1.30 [1.12; 1.53]

1983:4-2003:4 0.40 [3.42; 0.47]
United States, output per worker, business sector:

1982:2 [1974:1; 1990:3] 11.92 (0) 1947:2-1982:1 1.33 [1.15; 1.57]
1982:2-2003:4 0.41 [3.5E-1; 0.48]

Eurozone, real GDP per hour:
1992:3 [1986:1; 1999:1] 10.27 (0) 1970:2-1992:2 0.40 [3.4E-1; 0.47]

1992:3-2004:4 0.09 [7.7E-2; 0.10]
a Identical results based on the Andrews (1993) sup-Wald statistic are available upon
request. All other series, no identified break date.
b Innovation variance is for the rate of growth of labor productivity computed as the
quarter-on-quarter rate of change of the relevant index.
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Table 7 Power of the tests for breaks in the mean conditional on
taking the estimated Stock-Watson TVP-MUB models as data gene-
ration processesa

Based on:
Andrews and Bai and

Ploberger’s (1994) Perron’s (1998)
exp-Wald test statisticb WDmax test statisticb

United States, output per hour:
nonfarm business sector 0.329 0.390
nonfinancial corporations 0.319 0.310

Australia, output per hour, all industries 0.374 0.434
a Critical values have been bootstrapped as in Diebold and Chen (1996).
b The test is for a single break at an unknown point in the sample.

Table 8 Cochrane’s (1988) variance ratio estimator at the 20-year
horizon, and 90% confidence interval (percentage points)

Bootstrapped distribution of V̂ ∗80
90% confidence

V̂80 Median Mean interval
Output per hour:

United States:
nonfarm business sector 2.82 3.95 4.45 [2.26; 8.30]

business sector 1.87 2.80 3.27 [1.77; 6.35]
nonfinancial corporations 5.19 3.92 4.53 [2.49; 8.65]

Output per worker:
United States:
nonfarm business sector 2.44 3.11 3.60 [2.02; 6.83]

business sector 2.04 3.17 3.65 [2.01; 6.99]
nonfinancial corporations 5.21 4.32 4.91 [2.76; 9.04]
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Figure 8: Pseudo-real time estimates of equilibrium productivity growth in the United
States
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Figure 9: United States, estimates of the permanent component of the quarter-on-
quarter change in the rate of growth of labor productivity: results based on Cochrane’s
variance ratio estimator at the 20-year horizon
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Figure 10: Monte Carlo evidence on the performance of Cochrane’s (1988) variance
ratio estimator, and on the accuracy of the confidence intervals based on spectral
bootstrapping
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