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important factor behind the U.S. credit crisis. We show that a boom-bust cycle 
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future credit prospects. These effects interact with the Fisherian deflation 
mechanism, resulting in changes in debt, leverage, and asset prices larger 
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1 Introduction

A key factor behind the U.S. financial crisis was the large increase of household credit, residential

land prices, and leverage ratios that preceded it. Between 1996 and 2006, the year in which the

crisis started with the collapse of the sub-prime mortgage market, the net credit assets of U.S.

households and non-profit organizations fell from -35 to -70 percent of GDP (see the top panel of

Figure 1). By contrast, this ratio had remained very stable in the previous two decades. During

1996-2006, the market value of residential land as a share of GDP also surged, from about 45

percent to nearly 75 percent (see the bottom panel of Figure 1). Debt grew much faster than land

values, however, because the ratio of net credit assets to the market value of residential land, a

macroeconomic measure of the household leverage ratio, rose from 0.64 to 0.93 in absolute value.

Figure 1: Net Credit Market Assets and Value of Residential Land
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Notes: This figure plots the net credit market assets to GDP ratio for the U.S. households and non-profit organiza-

tions. Sources: Net Credit Market Assets: Flow of Funds Accounts of the U.S. provided by the Board of Governors

of the Federal Reserve System. Value of Residential Land: Davis and Heathcote (2007).

As the timeline in Figure 2 shows, the rapid growth of household credit and leverage started

with a period of significant financial innovation characterized by two central features: First, the

introduction of new financial instruments that “securitized” the payment streams generated by a
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wide variety of assets, particularly mortgages. Second, far-reaching reforms that radically changed

the legal and regulatory framework of financial markets.

Figure 2: Timeline of Events During the Run-up to the U.S. Credit Crisis

1987 Issuance of the first CDO •

• 1995 New Community Reinvestment Act1995 Net credit assets-GDP starts falling •
• 1997 Issuance of the first CDS at JPMorgan

1999 Gramm-Leach-Bliley Act • • 2000 Commodity Futures Modernization Act

2006 Peak of stock and housing markets •
• 2008 Net credit assets-GDP bottoms

The gradual introduction of collateralized debt obligations (CDOs) dates back to the early

1980s, but the securitization boom that fueled the growth of household debt started in the mid

1990s with the introduction of collateralized mortgage obligations (CMOs) and insurance contracts

on the payments of CDOs and CMOs known as credit default swaps (CDSs). In addition, synthetic

securitization allowed third parties to trade these securities as bets on the corresponding income

streams without being a party to the actual underlying loan contracts. By the end of 2007, the

market of CDSs alone was worth about $45 trillion (or 3 times U.S. GDP).

The financial reforms introduced in the 1990s were the most significant since the Great Depres-

sion, and in fact aimed at removing the barriers separating bank and non-bank financial intermedi-

aries set in 1933 with the Glass-Steagall Banking Act. Three Acts were particularly important for

the housing and credit booms: The 1995 New Community Reinvestment Act, which strengthened

the role of Fannie Mae and Freddie Mac in mortgage markets and facilitated mortgage securiti-

zation; the 1999 Gramm–Leach–Bliley Act, which removed the prohibition that prevented bank

holding companies from owning other financial companies; and the 2000 Commodity Futures Mod-

ernization Act, which stipulated that financial derivatives such as CDSs would not be regulated as

futures contracts, securities, or lotteries under any federal law.

We show in this paper that financial innovation of this magnitude can lead to a “natural”

underpricing of the risk associated with the new financial environment, and that this can produce a

surge in credit and asset prices, followed by a collapse. Undervaluing the risk was natural because of

the lack of data on the default and performance records of the new financial instruments, and on the
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stability of the financial system under the new regulatory framework. In line with this argument, the

strategy of “layering of risk” justified the belief that the new instruments were so well diversified

that they were virtually risk free. The latter was presumably being attained by using portfolio

models that combined top-rated tranches of assets with tranches containing riskier assets–under

the assumption that the risk of the assets was priced correctly. As Drew (2008) described it: “The

computer modelers gushed about the tranches. The layers spread out the risk. Only a catastrophic

failure would bring the structure crashing down, and the models said that wouldn’t happen.”

We recognize that several factors were at play in causing the credit boom that ended with the

financial crash, including moral hazard in financial markets and rating agencies, reckless lending

practices, growing global financial imbalances, and the lack of government supervision and reg-

ulation. In this paper, however, we focus exclusively on the role of financial innovation in an

environment with imperfect information and imperfect credit markets, so we can show how these

frictions alone can result in a pronounced credit boom-bust cycle. In particular, we propose a model

in which the true riskiness of the new financial environment can only be discovered with time, and

this learning process interacts with a collateral constraint that limits the debt of private agents not

to exceed a fraction of the market value of their holdings of a fixed asset (i.e., land).1

Financial innovation is modelled as a structural change that increases the leverage limit, thus

moving the economy to a “high-leverage” state. Agents know that in this new environment one

of two financial regimes can materialize in any given period: one in which high ability to leverage

continues, and one in which there is a switch back to the pre-financial-innovation leverage limit

(the “low-leverage” state). They do not know the true riskiness of the new financial environment,

because they lack data with which to estimate accurately the true regime-switching probabilities

across high- and low-leverage states. They are Bayesian learners, however, and so they learn

over time as they observe regime realizations, and in the long-run their beliefs converge to the

true regime-switching probabilities. Hence, in the long-run the model converges to the rational

expectations (RE) solution, with the risk of the financial environment priced correctly. In the

short-run, however, optimal plans and asset prices deviate from the RE equilibrium, because beliefs

differ from those of the RE solution, and this leads to a mispricing of risk.
1Following Davis and Heathcote (2007), we decided to focus on residential land and fluctuations in its price,

instead of focusing on housing prices. Davis and Heathcote decomposed U.S. housing prices into the prices of land and
structures, and found that between 1975 and 2006 residential land prices quadrupled while prices of physical structures
increased only by 33 percent in real terms. Furthermore, land prices are about three times more volatile than prices
of structures. Thus, land prices are more important than the prices of residential dwellings for understanding the
evolution of housing prices.
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Figure 3: Banks’ Willingness To Lend
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Notes: This figure plots the net percentage of domestic banks that reported tightening standards for mortgage loans

and credit card loans; and increased willingness to make consumer installment loans. The banks can choose from

five answers, 1) tightened significantly, 2) tightened somewhat, 3) remained unchanged, 4) eased somewhat, 5) eased

significantly. Net percentages are calculated by subtracting the number of banks that chose 4 or 5 from those that

chose 1 or 2, and then dividing by the total number of respondents. Source: Willingness to Lend Survey of the U.S.,

provided by the Board of Governors of the Federal Reserve System.

The collateral constraint introduces into the model the well-known Fisherian debt-deflation

mechanism of financial amplification, but the analysis of the interaction of this mechanism with the

learning dynamics is a novel feature of our work. In particular, the deviations of the agents’ beliefs

from the true RE regime-switching probabilities distort asset pricing conditions. The resulting

over- or under-pricing of assets translates into over- or under-inflated collateral values that affect

the debt-deflation dynamics.

Quantitative analysis shows that the process of discovery of risk in the presence of collateral

constraints has important effects on macroeconomic aggregates, and leads to a period of booming

credit and land prices, followed by a sharp, sudden collapse. We conduct an experiment calibrated

to U.S. data in which we date the start of financial innovation in the first quarter of 1997 and the

beginning of the financial crisis in the first quarter of 2007. Hence, from 1997 to the end of 2006

we assume that the economy experienced the high-leverage regime, followed by a switch to the

low-leverage regime in the first quarter of 2007. The outstanding stock of net credit assets did not

rise sharply then (see Figure 1), but the fraction of banks that tightened standards for mortgage

and credit card loans jumped from nearly zero to over 50 percent (see Figure 3). The initial priors

of the Bayesian learning process are calibrated to match observed excess returns on Fannie Mae
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MBS at the beginning of 1997, and the high- and low-leverage limits are set equal to the observed

leverage ratios before 1997 and at the end of 2006.

Under these assumptions, our model predicts that agents became optimistic about the proba-

bility of persistence of the high-leverage regime very soon after 1997, and remained so until they

observed the switch to the low-leverage regime. During this “optimistic phase,” debt, leverage and

collateral values (i.e., land prices) rise significantly above what the RE equilibrium predicts.2 In

fact, the model accounts for 69 percent of the rise in net household debt and 53 percent of the rise

in residential land prices during 1997-2006. Conversely, when agents observe the first realization of

the low-leverage regime, they respond with a sharp correction in their beliefs and become unduly

pessimistic, causing sharp downward adjustments in credit, land prices and consumption.3

The results also show that the interaction between the debt-deflation mechanism and the learn-

ing mechanism is quantitatively significant. The model predicts effects on debt and asset prices

that are nearly twice as large when we allow for these two mechanisms to interact than when we

remove either one.

Although we focus on the recent U.S. credit crisis and the financial innovation that preceded it,

our framework applies to many episodes of credit booms and busts associated with large changes in

the financial environment. It is well-known, for instance, that many of the countries to which the

financial crisis spread after hitting the U.S. displayed similar pre-crisis features, in terms of a large

expansion of the financial sector into new instruments under new regulations, and also experienced

large housing booms (e.g., the United Kingdom, Spain, Iceland, Ireland). There is also evidence of

a similar process at work before the Great Depression, specifically the securitization boom in the

commercial mortgage market in the 1920s (Goetzmann and Newman (2010)). Moreover, Mendoza

and Terrones (2008) found that 33 (22) percent of credit booms observed in the 1965-2006 period

in developed (emerging) economies occurred after periods of large financial reforms. Looking at

specific countries, the credit booms of Central and Eastern European transition economies in the

aftermath of their financial liberalization, and those observed in the Baltic states in the mid 2000’s,

just before they entered the European Union, are very good examples.4 In both cases there was
2The degree of optimism generated in the optimistic phase is at its highest just before agents observe the first

realization of the low-leverage regime. This occurs because, when the new financial environment is first introduced,
agents cannot rule out the possibility of the high-leverage regime being absorbent until they experience the first
realization of the low-leverage state.

3The transition to the low-leverage regime is taken as given. One can think of it as being due to a disruption in
financial intermediation as in Gertler and Kiyotaki (2010) that is not explicitly modelled in this paper.

4See Lipschitz, Lane, and Mourmouras (2002) for a discussion of capital flows to transition economies and the
resulting policy challenges.
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significant financial innovation, and since these countries had not liberalized financial markets or

been in the EU before, there was little relevant history on which to base expectations.

We model learning following the approach proposed by Cogley and Sargent (2008). They offer

an explanation of the equity premium puzzle by modelling a period of persistent pessimism caused

by the Great Depression. They assume high and low states for consumption growth, with the true

transition probabilities across these states unknown. Agents learn the true probabilities over time

as they observe (without noise) the realizations of consumption growth. Similarly, in our setup, the

true probabilities of switching across leverage regimes are unknown, and agents learn about them

over time.

This paper is also related to the broader macro literature on the macroeconomic implications of

learning. Most of this literature focuses on learning from noisy signals (see, for example, Blanchard,

L’Huillier, and Lorenzoni (2008), Boz (2009), Boz, Daude, and Durdu (2008), Edge, Laubach,

and Williams (2007), Lorenzoni (2009), Nieuwerburgh and Veldkamp (2006)). The informational

friction in these models typically stems from signal extraction problems requiring the decomposition

of signals into a persistent component and a noise component. The informational friction in models

like ours and Cogley and Sargent (2008) is fundamentally different, because there is no signal

extraction problem. Agents observe realizations of the relevant variables without noise. Instead,

there is imperfect information about the true transition probabability distribution of these variables.

The financial innovations that led to the U.S. credit crisis provide a natural laboratory to study

the effects of this class of learning models, because the new financial products clearly lacked the

time-series data needed to infer the true probability of “catastrophic failure” of credit markets (i.e.,

the probability of switching to a low-leverage regime).

The credit constraint used in our model is similar to those widely examined in the macro

literature on financial frictions and in the international macro literature on Sudden Stops. When

these constraints are used in RE stochastic environments, precautionary savings reduce significantly

the long-run probability of states in which the constraints are binding (see Mendoza (2010) and

Durdu, Mendoza, and Terrones (2009)). In our learning model, however, agents have significantly

weaker incentives for building precautionary savings than under rational expectations, until they

attain the long-run in which they have learned the true riskiness of the financial environment. Since

agents borrow too much during the optimistic phase, the economy is vulnerable to suffer a large

credit crunch when the first switch to a regime with low leverage occurs.
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Our credit constraint also features the “systemic credit externality” present in several models of

financial crises. In particular, agents do not internalize the implications of their individual actions on

credit conditions because of changes in equilibrium prices, and this leads to “overborrowing” relative

to debt levels that would be acquired without the externality. The studies on overborrowing like

those by Uribe (2006), Korinek (2008), and Bianchi (2009) explore whether credit externalities can

generate excessive borrowing in decentralized equilibria relative to a constrained social optimum.

Our paper makes two contributions to this line of research. First, we show that the discovery

of risk generates sizable overborrowing (relative to the RE decentralized equilibrium), because of

the unduly optimistic expectations of agents during the optimistic phase of the learning dynamics.

This remains the case even in variants of our model with credit constraints that do not include

the credit externality. Second, we provide the first analysis of the interaction between the credit

externality and the underpricing of risk driven by a process of “risk discovery.”

Our work is also related to the literature on credit booms. The stylized facts documented by

Mendoza and Terrones (2008) show that credit booms have well-defined cyclical patterns, with

the peak of credit booms preceded by periods of expansion in credit, asset prices, and economic

activity followed by sharp contractions. Most of the models of financial crises, however, emphasize

mechanisms that amplify downturns and explain crashes but leave booms unexplained. In this

regard, our model aims to explain both the boom and the bust phase of credit cycles.

Finally, our paper is also related to some of the recent macro/finance literature on the U.S.

credit crisis that emphasizes learning frictions and financial innovation, particularly the work of

Howitt (2010) and Favilukis, Ludvigson, and Nieuwerburgh (2010). Howitt studies the interaction

of expectations, leverage and a solvency constraint in a representative agent setup similar to ours,

and he shows that adaptive learning about asset returns leads to periods of “cumulative optimism”

followed by “cumulative pessimism,” and this can lead to a crisis. Our analysis differs in that

we study Bayesian learning, instead of adaptive expectations, and we model learning about the

persistence of a financial regime, defined in terms of the maximum leverage ratio specified by a

collateral constraint.5 Favilukis, Ludvigson, and Nieuwerburgh (2010) analyze the macroeconomic

effects of housing wealth and housing finance in a heterogenous agents, DSGE model with credit

constraints. They study transition dynamics from an environment with high financial transaction
5There is also an interesting contrast across the two studies in terms of the motivation for focusing on learning to

study the financial crisis. Howitt argues that the learning friction matters because agents learn in adaptive fashion
about the behavior of asset returns, in a financial regime that is in fact unchanged, while we argue that it matters
because agents learn gradually the true persistence of a new financial regime, while they have perfect information
about the random process that drives dividends.
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costs and tight credit limits to one with the opposite features. Our analysis has a similar flavor,

but we focus on the effects of imperfect information and learning on macro dynamics, while they

study a rational expectations environment.

The remainder of this paper proceeds as follows: Section 2 describes the model and the learning

process. Section 3 examines the model’s quantitative implications. Section 4 concludes.

2 A Model of Financial Innovation with Learning

We study a representative agent economy in which risk-averse individuals formulate optimal plans

facing exogenous income fluctuations. The risk associated with these fluctuations cannot be fully

diversified because asset markets are incomplete. Individuals have access to two assets: a non-

state-contingent bond and an asset in fixed supply (land). The credit market is imperfect, because

individuals’ ability to borrow is limited not to exceed a fraction κ of the market value of their land

holdings. That is, κ imposes an upper bound on the agents’ leverage ratio.

The main feature that differentiates our model from typical macro models with credit frictions

is the assumption that agents have imperfect information about the regime-switching probabilities

that drive fluctuations in κ.6 Specifically, we model a situation in which financial innovation starts

with an initial shift from a low-leverage regime (κl) to a regime with higher ability to leverage (κh).

Agents do not know the true regime-switching probabilities between κl and κh in this new financial

environment. They are Bayesian learners, so in the long-run they learn these true probabilities

and form rational expectations. In the short-run, however, they form their expectations with the

posteriors they construct as they observe realizations of κ. Hence, they “discover” the true riskiness

of the new financial environment only after they have observed a sample with enough regime

realizations and regime switches to estimate the true regime-switching probabilities accurately.

We assume that the risk-free interest rate is exogenous in order to keep the interaction between

financial innovation and learning tractable. At the aggregate level, this assumption corresponds

to an economy that is small and open with respect to world capital markets. This is in line with

recent evidence suggesting that in the era of financial globalization even the U.S. risk-free rate has

been significantly influenced by outside factors, such as the surge in reserves in emerging economies

and the persistent collapse of investment rates in South East Asia after 1998 (see Warnock and
6In previous work we studied a similar informational friction but in a setup in which the credit constraint does

not depend on market prices. In that scenario, the distortions produced by the learning process in the aftermath of
financial innovation do not interact with the credit externality present in the model we study here.
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Warnock (2006), Bernanke (2005), Durdu, Mendoza, and Terrones (2009), Mendoza, Quadrini,

and Rı̀os-Rull (2009)). Moreover, post-war data from the Flow of Funds published by the Federal

Reserve show that, while pre-1980s the United States was in virtual financial autarky, because the

fraction of net credit of U.S. nonfinancial sectors financed by the rest of the world was close to

zero, about one half of the surge in net credit since the mid-1980s was financed by the rest of the

world (see Mendoza and Quadrini (2010)). Alternatively, our setup can be viewed as a partial

equilibrium model of the U.S. economy that studies the effects of financial innovation on household

debt and residential land prices, taking the risk-free rate as given, as in Corbae and Quintin (2009)

and Howitt (2010).

2.1 Agents’ Optimization Problem

Agents act atomistically in competitive markets and choose consumption (ct), land holdings (lt+1)

and holdings of one-period discount bonds (bt+1), taking as given the price of land (qt) and the

gross real interest rate (R) so as to maximize a standard intertemporal utility function:

Es
0

[ ∞∑

t=0

βtu(ct)

]
(1)

It is critical to note that Es
t represents the expectations operator conditional on the representative

agent’s beliefs formulated with the information available up to and including date t. As we explain

below, these beliefs will differ in general from the rational expectations formulated with perfect

information about the persistence of the financial regime, which are denoted Ea
t .

The agents’ budget constraint is:

ct = ztg(lt) + qtlt − qtlt+1 − bt+1

R
+ bt (2)

Agents operate a concave neoclassical production function g(lt) subject to a stochastic TFP shock

zt. Since land is in fixed aggregate supply, a linear production technology could also be used. We

will use the curvature of g(lt), however, to calibrate the model so that the condition that arbitrages

returns across bonds and land is consistent with U.S. data on the risk-free interest rate and the

value of residential land as a share of GDP (see Section 3 for details).

TFP shocks follow an exogenous discrete Markov process (which can be enriched to include

also interest rate shocks). For these shocks, we assume that agents know their true Markov process

9



without informational frictions. That is they know the Markov transition matrix π(zt+1 | zt) and

the corresponding set Z of M possible realizations of z at any point in time (i.e., zt ∈ Z = {z1 <

z2 < .... < zM )). Alternatively, we could assume that TFP shocks are also affected by imperfect

information.

Frictions in the credit market force agents to comply with a collateral constraint that limits the

value of debt (given by bt+1/R since 1/R is the price of discount bonds) to a time-varying fraction

κt of the market value of their land holdings:

bt+1

R
≥ −κtqtlt+1 (3)

In this constraint, κt is a random variable that follows a “true” Markov process characterized by a

standard two-point, regime-switching process with regimes κh and κl, with κh > κl, and transition

probabilities given by F a = pa(κt+1 | κt).7 The continuation transition probabilities are denoted

F a
hh ≡ pa(κt+1 = κh | κt = κh) and F a

ll ≡ pa(κt+1 = κl | κt = κl), and the switching probabilities

are F a
hl = 1 − F a

hh and F a
lh = 1 − F a

ll . The long-run probabilities of the high- and low-leverage

regimes are Πh = F a
lh/(F a

lh + F a
hl) and Πl = F a

hl/(F a
lh + F a

hl) respectively, and the corresponding

mean durations are 1/F a
hl and 1/F a

lh. The long-run unconditional mean, variance, and first-order

autocorrelation of κ are:

Ea[κ] = (F a
lhκh + F a

hlκ
l)/(F a

lh + F a
hl) (4)

σ2(κ) = Πh(κh)2 + Πl(κl)2 − (E[κ])2 (5)

ρ(κ) = F a
ll − F a

hl = F a
hh − F a

lh (6)

As explained earlier, agents know κh and κl but do not know F a. Hence, they make decisions

based on their individual beliefs characterized by Es which evolve over time. Using µ to denote

the Lagrange multiplier on the credit constraint, the agents’ optimality conditions for bonds and

land are:

u′(ct) = βREs
t

[
u′(ct+1)

]
+ µt (7)

qt(u′(ct)− µtκt) = βEs
t

[
u′(ct+1)

(
zt+1g

′(lt+1) + qt+1

)]
. (8)

7One could also specify a continuous AR(1) process for κ such as κt = mt +κt−1 + εt. The different regimes could
be captured with a shift in the mean: m ∈ {mh, ml} and the agents could learn about the process governing m. We
conjecture that this specification would yield similar results as agents could turn optimistic about the persistence of
the high mean regime for κ.
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With the caveat that agents use subjective beliefs to form expectations, these conditions are stan-

dard from models with credit constraints. Following Mendoza (2010), we can show that the second

condition implies a forward solution for land prices in which the future stream of land dividends is

discounted at the stochastic discount factors adjusted for the shadow value of the credit constraint:

qt = Es
t



∞∑

j=0

(
j∏

i=0

M t+1+i
t+i

)
zt+1+jg

′(lt+1+j)


 , M t+1+i

t+i ≡ βu′(ct+1+i)
u′(ct+i)− µt+iκt+i

(9)

Defining the return on land as Rq
t+1 ≡ (zt+1g

′(lt+1) + qt+1)/qt and the period marginal utility

of consumption as λt+1 ≡ βu′(ct+1), the excess return on land can be expressed as:

Es
t

[
Rq

t+1 −R
]

=
(1− κt)µt − covs

t (λt+1, R
q
t+1)

Es
t [λt+1]

(10)

Thus, as in Mendoza (2010), the borrowing constraint enlarges the standard premium on land

holdings, driven by the covariance between marginal utility and asset returns, by introducing direct

and indirect effects. The direct effect is represented by the term (1− κt)µt. The indirect effect is

represented by the fact that the credit constraint hampers the agents’ ability to smooth consumption

and hence reduces covs
t (λt+1, R

q
t+1). Moreover, since the expected land returns satisfy qtE

s
t [R

q
t+1] ≡

Es
t [zt+1g

′(lt+1) + qt+1], we can rewrite the forward solution for the agents’ land valuation as:

qt = Es
t



∞∑

j=0

(
j∏

i=0

(
1

Es
t [R

q
t+1+i]

))
zt+1+jg

′(lt+1+j)


 . (11)

The expressions in (10) and (11) imply that the collateral constraint lowers land prices because

it increases the rate of return at which future land dividends are discounted. Note also that land

valuations are reduced at t not just when the constraint binds at t , which increases Es
t [R

q
t+1], but

also if agents expect (given their beliefs F s) that the constraint can bind at any future date, which

increases Es
t [R

q
t+1+i] for some i > 0. Thus this expression suggests that the learning process and

the collateral constraint interact in an important way. For instance, suppose the credit constraint

was binding at t, pessimistic beliefs such that agents expect higher future land returns because of

tight credit conditions will depress more current land prices, which will tighten more the collateral

constraint.

The economy has a fixed unit supply of land, hence market clearing in the land market implies

that the land holdings of the representative agent must satisfy lt = 1 for all t, and the rest of the
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equilibrium conditions reduce to the following:

u′(ct) = βREs
t

[
u′(ct+1)

]
+ µt (12)

qt(u′(ct)− µtκt) = βEs
t

[
u′(ct+1)

(
zt+1g

′(1) + qt+1

)]
(13)

ct = ztg(1)− bt+1

R
+ bt (14)

bt+1

R
≥ −κtqt1 (15)

2.2 General Features of the Learning Setup

Following Cogley and Sargent (2008), our learning setup features two-point passive learning without

noise, so that the belief transition probability matrix denoted by ps
t (κt+1 | κt) converges to its true

value ps
t (κt+1 | κt) → pa(κt+1 | κt) for sufficiently large t. With this setup, agents learn about the

transition probability matrix only as they observe realizations of the shocks. In particular, they

learn about the true regime-switching probabilities of κ only after observing a sufficiently long set

of realizations of κh and κl.8

This learning setup fits nicely our goal of studying a situation in which financial innovation

represents an initial condition with a state κh but with imperfect information about the true

riskiness of this new environment. Agents are ignorant about the true transition distribution of κ,

since there is no data history to infer it from. Over time, if they observe a sequence of realizations of

κh for a few periods, they build optimism by assigning a probability to the possibility of continuing

in κh that is higher than the true value. We refer to this situation as the “optimistic phase.” Such

optimism by itself is a source of vulnerability, because it is quickly reversed into a “pessimistic

phase” with the opposite characteristics as the first few realizations of κl hit the economy. In

addition, during the optimistic phase, the incentives to build precautionary savings against the risk

of a shift in the ability to leverage are weaker than in the long-run RE equilibrium. This increases

the agents’ risk of being caught “off-guard” (i.e., with too much debt) when the first shift to the

low-leverage regime occurs.

Modeling imperfect information in this fashion implies a deviation from rational expectations.

This is a key feature of our model, because it highlights the role of the short history of a new

financial regime in hampering the ability of agents to correctly assess risk. This approach seems
8Time alone does not determine how fast agents learn. The order in which κ realizations, and switches between

realizations, occur also matters.
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better suited for studying the role of financial innovation in causing the financial crisis, as opposed

to a standard signal extraction problem with noisy signals and rational expectations.

Since κ is exogenous, we are modeling a passive learning structure from and about exogenous

variables, which facilitates significantly the analysis and numerical solution of the model. In par-

ticular, it allows us to split the analysis into two parts. The first part uses Bayesian learning to

generate the agents’ sequence of posterior density functions {f(F s | κt)}T
t=1. Each of these density

functions (one for each date t) is a probability distribution over possible Markov transition matrices

F s. Since agents do not know the true transition matrix F a, the density function changes with the

sequence of realizations observed up to date t (i.e.,
{
κt, κt−1, ..., κ1

}
where κt = (κt, κt−1, ..., κ1))

and with the initial date-0 priors, as we explain below. If date T is high enough to accomodate

sufficient sampling of regime switches across κh and κl, the sequence {f(F s | κt)}T
t=1 converges to

a distribution with all its mass in F a. In other words, beliefs converge to the true values, so that

in the long-run the model converges to the RE equilibrium.

The second part of the analysis characterizes the model’s equilibrium by combining the se-

quences of posterior densities obtained in the first part, {f(F s | κt)}T
t=1, with chained solutions

from a set of “conditional” optimization problems. These problems are conditional on the posterior

density function of F s that agents form with the history of realizations up to each date t. This

approach takes advantage of the fact that, because of the passive learning, agents do not benefit

from trying to improve their inference about the regime switching probabilities by “experimenting”

using their optimization problems. As a result, the evolution of beliefs can be analyzed separately

from the agents’ optimal consumption and savings plans. The remainder of this Section examines

in more detail the Bayesian learning setup and the construction of the model’s equilibrium.

2.3 Learning and the Sequence of Beliefs

The learning framework takes as given an observed history of realizations of T periods of leverage

regimes, denoted by κT , and a prior of F s for date t = 0, p(F s), and it yields a sequence of posteriors

over F s for every date t, {f(F s | κt)}T
t=1.

9 At every date t, from 0 to T , the information set of the

agent includes κt as well as the possible values that κ can take (κh and κl).

Agents form posteriors from priors using a beta-binomial probability model. Since agents know

the realization vector of κ, information is imperfect only with regard to the Markov transition matrix

across κ′s, and, because κ can only take two values, this boils down to imperfect information about
9In describing the learning problem, we employ the notation used by Cogley and Sargent (2008).
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the continuation probabilities F a
hh and F a

ll . The other two elements of the transition matrix of κ

are recovered using F a
ii + F a

ij = 1, where F a
ij denotes the true probability of switching from state i

to state j.

The agents’ posteriors about F s
hh and F s

ll have Beta distributions as well, and the parameters

that define them are determined by the number of regime switches observed in a particular history

κt. As in Cogley and Sargent (2008), we assume that the priors for F s
hh and F s

ll included in p(F s)

are independent and determined by the number of transitions assumed to have been observed prior

to date t = 1. More formally,

p(F s
ii) ∝ (F s

ii)
nii

0 −1(1− F s
ii)

nij
0 −1 (16)

where nij
0 denotes the number of transitions from state i to state j assumed to have been observed

prior to date 1.

The likelihood function of κt conditional on F s
hh and F s

ll is obtained by multiplying the densities

of F s
hh and F s

ll:

f(κt | F s
hh, F s

ll) ∝ (F s
hh)(n

hh
t −nhh

0 )(1− F s
hh)(n

hl
t −nhl

0 )(1− F s
ll)

(nlh
t −nlh

0 )(F s
ll)

(nll
t −nll

0 ). (17)

Multiplying the likelihood function by the priors delivers the posterior kernel:

k(F s | κt) ∝ (F s
hh)(n

hh
t −1)(1− F s

hh)(n
hl
t −1)(1− F s

ll)
(nlh

t −1)F s
ll

(nll
t −1), (18)

and dividing the kernel using the normalizing constant M(κt) yields the posterior density:

f(F s | κt) = k(F s | κt)/M(κt) (19)

where

M(κt) =
∫∫

(F s
hh)(n

hh
t −1)(1− F s

hh)(n
hl
t −1)(1− F s

ll)
(nlh

t −1)(F s
ll)

(nll
t −1) dF s

hhdF s
ll.

The number of transitions across regimes is updated as follows:

nij
t+1 =





nij
t + 1 if κt+1 = κj and κt = κi,

nij
t otherwise.
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Note that the posteriors are of the form F s
hh ∝ Beta(nhh

t , nhl
t ) and F s

ll ∝ Beta(nlh
t , nll

t ). That

is, the posteriors for κh only depend on nhh
t and nhl

t and not on the other two counters, nlh
t and

nll
t , and the posteriors for κl only depend on nlh

t and nll
t . This is important because it implies that

the posteriors of F s
hh change only as nhh

t and nhl
t change, and this only happens when the date-t

realization is κh. If, for example, the economy experiences realizations κ = κh for several periods,

agents learn only about the persistence of the high-leverage regime. They learn nothing about the

persistence of the low-leverage regime. To learn about this, they need to observe realizations of κl.

Since in a two-point, regime-switching setup persistence parameters also determine mean durations,

it follows that both the persistence and the mean durations of leverage regimes can be learned only

as the economy actually experiences κl and κh.10

Figure 4: Evolution of Beliefs
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Notes: This figure plots the evolution of beliefs about F s
hh (top panel), F s

ll (middle panel), and the associated realiza-

tions of κ (lower panel). The horizontal red lines in the upper two panels mark the true values of the corresponding

variables.

10If priors, as well as F a
hh and F a

ll , are correlated, learning would likely be faster, because agents would update their
beliefs about both F s

hh and F s
ll every period, instead of updating only one or the other depending on the regime they

observe. But this is akin to removing some of the informational friction by assumption. In an extreme case, imagine
that F a

hh = F a
ll and that the agents know about this property of the model. In this case, agents know an important

characteristic of the transition probability matrix (i.e. that is symmetric), which weakens the initial premise stating
that they do not know any of its properties. Agents would learn about the persistence of both regimes no matter
which one they observe.
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We illustrate the learning dynamics of this setup by means of a simple numerical example. We

choose a set of values for F a
hh, F a

ll , and initial priors, and then simulate the learning process for

300 quarters (75 years) using a hypothetical sequence of κ realizations produced by a stochastic

simulation of the true Markov-switching process. The results are plotted in Figure 4, which shows

the time paths of the conditional averages of F s
hh and F s

ll based on the beliefs formed at each date

t in the horizontal axis, after observing the corresponding κt shown in the bottom panel. The true

regime-switching probabilities are set to F a
hh = 0.95 and F a

ll = 0.5. These values are used only for

illustration purposes (they are not calibrated to actual data as in the solution of the full model in

Section 3). In addition, the date-0 priors are set to F s
hh ∼ Beta(0.7, 0.7) and F s

ll ∼ Beta(0.7, 0.7).

With these priors, the agents update their beliefs about the persistence of the high-leverage regime

to around 0.78 after observing κ1 = κh.

The most striking result evident in Figure 4 is that financial innovation can lead to significant

underestimation of risk. Specifically, the initial sequence of realizations of κh observed until just

before the first realization of κl (the “optimistic phase”) generates substantial optimism. In this

example, the optimistic phase covers the first 30 periods. The degree of optimism produced during

this phase can be measured by the difference between the conditional expectation based on the

date-t beliefs, F s
hh, and the corresponding rational expectations value, F a

hh (shown in the horizontal

line of the top panel). As the Figure shows, the difference grows much larger during the optimistic

phase than in any of the subsequent periods. For example, even though the economy remains in

κh from around date 40 to date 80, the magnitude of the optimism that this period generates is

smaller than in the initial optimistic phase. This is because it is only after observing the first switch

to κl that agents rule out the possibility of κh being an absorbent state. As a result, F s
hh cannot

surge as high as it did during the initial optimistic phase. Notice also that the first realizations

of κl generate a “pessimistic phase,” in which F s
ll is significantly higher than F a

ll , so the period of

unduly optimistic expectations is followed by a period of unduly pessimistic expectations.

Figure 4 also illustrates the fact that the beliefs about the average duration of κh (κl) are

updated only when the economy is in the high- (low-) leverage state. This is evident, for example,

in the initial optimistic phase (the first 30 periods), when F s
ll does not change at all. As explained

above, for the agents to learn about the duration of the high- (low-) leverage regime, the economy

needs to actually be in that regime. This feature of the learning dynamics also explains why in this

example F s
hh converges to F a

hh faster than F s
ll. Given that the low-leverage regime is visited much
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less frequently, it takes longer for the agents to learn about its persistence, and therefore F s
ll takes

longer to converge to F a
ll .

2.4 Recursive Competitive Equilibrium

We define the model’s competitive equilibrium in recursive form. Since in the quantitative analysis

we solve the model by policy function iteration on the equilibrium conditions (12)-(15), we for-

mulate the recursive equilibrium using these conditions instead of a Bellman equation (Appendix

A describes the solution method in detail). The state variables in the recursive equilibrium are

defined by the triple (b, z, κ).

The solution strategy works by breaking down the problem into a set of conditional optimization

problems (COP) that are conditional on the beliefs agents have each period. We add time indices to

the policy and pricing functions in the recursive equilibrium so as to identify the date of the beliefs

that match the corresponding COP. It is critical to note that this solution strategy works because

the law of iterated expectations holds with passive Bayesian learning (see Appendix B in Cogley

and Sargent (2008)). This is important because, in solving each COP, agents take into account that

they are in a learning environment, so they form expectations about the future, including future κ′s

and the associated future beliefs, conditional on the information and beliefs they have in the current

planning period. Since the law of iterated expectations holds, however, Es
t [E

s
t+1(xt+2)] = Es

t [xt+2].

Consider first the date-1 COP. At this point agents have observed κ1, and use it to update

their beliefs. Thus, we pull f(F s | κ1) from the sequence of posterior density functions solved

for in the previous subsection. This is the first density function in the sequence {f(F s | κt)}T
t=1,

and it represents the first posterior about the distribution of F s that agents form, given that

they have observed κ1 and given their initial priors. The solution to the date-1 COP is given by

policy functions (b′1(b, z, κ), c1(b, z, κ), µ1(b, z, κ)) and a pricing function q1(b, z, κ) that satisfy the
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equilibrium conditions (12)-(15) rewritten in recursive form:

u′(c1(b, z, κ)) = βR

[∑

z′∈Z

(∫
Es

1[u
′(c1(b′, z′, κ′)) | f(κ′ | κ1, F s)]f(F s | κ1)dF s

)
π(z′ | z)

]
+ µ1(b, z, κ)

(20)

q1(b, z, κ)(u′ (c1(b, z, κ))− µ1(b, z, κ)κ) = (21)

β

[∑

z′∈Z

(∫
Es

1[u
′(c1(b′, z′, κ′))

(
z′g′(1) + q1(b′, z′, κ′)

) | f(κ′ | κ1, F s)]f(F s | κ1)dF s

)
π(z′ | z)

]

c1(b, z, κ) = zg(1)− b′1(b, z, κ)
R

+ b (22)

b′1(b, z, κ)
R

≥ −κq1(b, z, κ)1 (23)

where the expectations inside the integrals in (20) and (21) are of the form Es
1[x | f(κ′ | κ1, F s)] ≡

∑h
i=l Pr(κ′ = κi | κ1, F s)x, for a random variable x that depends on κ′. These expectations taken

by themselves are analogous to those we would calculate if we were solving a standard RE model

using an Euler-equations method with an invariant Markov transition function F s. Since agents

here do not know F a, however, the expectations in (20) and (21) also integrate over f(F s | κ1).

The time subscripts that index the policy and pricing functions indicate the date of the beliefs use

to form the expectations (which is also the date of the most recent observation of κ, which is date

1 in this case).

Recall that Equations (20)-(23) incorporate the market-clearing condition in the land market,

which requires l = 1. Moreover, given (20)-(21), the pricing function q1(b, z, κ) satisfies the asset

pricing equation (11).

It is critical to note that solving for date-1 policy and pricing functions means solving for a full

set of optimal plans over the entire (b, z, κ) domain of the state space and conditional on f(F s | κ1).

Thus, we are solving for the optimal plans agents “conjecture” they would make over the infinite

future acting under the beliefs given by f(F s | κ1). This COP remains recursive, particularly

in terms of forming expectations about future variables and beliefs, because the law of iterated

expectations still holds. For characterizing the “actual” equilibrium dynamics to match against the

data, however, the solution of the date-1 COP determines optimal plans for date 1 only.

Generalizing the date-1 problem we can define COPs for all subsequent dates t = 2, ..., T using

the corresponding density function f(F s | κt) for each date t in the sequence of beliefs solved for

earlier. This is crucial because f(F s | κt) changes as time passes and each subsequent κt is observed,
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reflecting the passive Bayesian learning, which implies that the policy and pricing functions that

solve each COP also change. Thus, history matters for the “full solution” of the model because

assuming different histories κt yields different densities f(F s | κt), and hence different sets of policy

functions. If at any two dates t and t + j we give the agents the same values for (b, z, κ), they in

general, will not choose the same bond holdings for the following period because f(F s | κt) and

f(F s | κt+j) will differ.

The solution to the date-t COP is given by policy functions (b′t(b, z, κ), ct(b, z, κ), µt(b, z, κ)) and

a pricing function qt(b, z, κ) that satisfy the model’s equilibrium conditions:

u′(ct(b, z, κ))=βR

[∑

z′∈Z

(∫
Es

t [u
′(ct(b′, z′, κ′)) | f(κ′ | κt, F s)]f(F s | κt)dF s

)
π(z′ | z)

]
+µt(b, z, κ)

(24)

qt(b, z, κ)(u′ (ct(b, z, κ))− µt(b, z, κ)κ) = (25)

β

[∑

z′∈Z

(∫
Es

t [u
′(ct(b′, z′, κ′))

(
z′g′(1) + qt(b′, z′, κ′)

) | f(κ′ | κt, F s)]f(F s | κt)dF s

)
π(z′ | z)

]

ct(b, z, κ) = zg(1)− b′t(b, z, κ)
R

+ b (26)

b′t(b, z, κ)
R

≥ −κqt(b, z, κ)1 (27)

We can now define the model’s recursive equilibrium as follows:

Definition Given a T -period history of realizations κT = (κT , κT−1, ..., κ1), a recursive competitive

equilibrium for the economy is given by a sequence of policy functions [b′t(b, z, κ), ct(b, z, κ), µt(b, z, κ)]Tt=1

and pricing functions [qt(b, z, κ)]Tt=1 such that: (a) b′t(b, z, κ), ct(b, z, κ), µt(b, z, κ) and qt(b, z, κ)

solve the date-t COP conditional on f(F s | κt); (b) f(F s | κt) is the date-t posterior density of F s

determined by the Bayesian passive learning process summarized in Equation (19).

Intuitively, the complete solution of the recursive equilibrium is formed by chaining together the

solutions for each date-t COP. That is, the equilibrium dynamics at each date t = 1, ...T for a partic-

ular history κT are given by
[
b′t(b, z, κ), ct(b, z, κ), µt(b, z, κ), qt(b, z, κ), f(F s | κt)

]T

t=1
. At each date

in this sequence, b′t(b, z, κ), ct(b, z, κ), µt(b, z, κ), qt(b, z, κ), are the recursive functions that solve the

corresponding date’s COP using f(F s | κt) to form expectations. Hence, the sequence of equilibrium

decision rules for bond holdings that the model predicts for dates t = 1, ..., T would be obtained by

chaining the relevant decision rules as follows: b2 = b′1(b, z, κ), b3 = b′2(b, z, κ), ..., bT+1 = b′T (b, z, κ).
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3 Quantitative Analysis

In this section we calibrate the model to U.S. data and study its quantitative predictions for the

following financial innovation experiment: At t = 1, financial innovation begins with the first

realization of κh, followed by an optimistic phase in which the same regime continues for J periods.

At date J+1 the first realization of κl occurs, and the financial regime remains in state κl from dates

J + 1 to T . In short, the experiment assumes the sequence of realizations κt = κh for t = 1, ..., J

and κt = κl for t = J + 1, ..., T .

3.1 Baseline Calibration

The functional forms for preferences and technology are standard: u(ct) = c1−σ
t
1−σ and g(lt) = lαt . The

calibration requires setting values for the parameters (α, β, σ,R), the Markov process for z, and the

parameters of the learning setup, which include κh, κl, nhh
0 , nhl

0 , nll
0 , nlh

0 , J and T . We propose a

set of baseline calibration parameters based on U.S. data, and later we conduct sensitivity analysis

to evaluate the robustness of the results to changes in the baseline calibration.

We calibrate the model to a quarterly frequency at annualized rates. The beginning of the

financial innovation experiment is dated as of 1997Q1. This is in line with the observations that

1997 was the year in which the first CDS was issued at JPMorgan and the first publicly-available

securitization of loans under the New Community Reinvestment Act took place. Moreover, 1997 is

also the year in which the net credit assets-GDP ratio shown in Figure 1 started on its declining

trend. We date the start of the financial crisis as of 2007Q1, to match the early stages of the

subprime mortgage crisis after the Fall of 2006. This is in line with the observation that the net

fraction of banks reporting tighter standards for mortgage loans jumped significantly to 16 percent

in 2007Q1, as shown in Figure 3.11

The above timing assumptions imply that the first realization of κh occurred in 1997Q1 and

κh continued to be observed trough 2006Q4. Hence, the optimistic phase lasts J = 40 quarters

(10 years). The first realization of κl occurred in 2007Q1 and κl continued to be observed through

2008Q4. Thus, the learning period has a total length of T = 48 quarters, in which the first 40

realizations of κ are κh and the remaining 8 are κl.
11These dates are broadly in line with those assumed by Campbell and Hercowitz (2009), who study the welfare

implications of a transition from a high- home-equity-requirement regime to a low-equity-requirement regime. They
assume that the former corresponds to the 1982-1994 period, while the latter starts in 1995.
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In the pre-financial-innovation period, before 1997, we assume that there was only one financial

regime with κ = κl, and hence the only source of uncertainty were TFP shocks. The values

of (α, β, σ,R) and κl are then set so that the model’s stochastic stationary state under these

assumptions is consistent with various averages from U.S. data from the pre-financial-innovation

period.

We set the real interest rate to 2.66 percent annually. This is the average ex-post real interest

rate on U.S. three-month T-bills during the period 1980Q1-1996Q4.

Our data proxy for b are the net credit market assets of U.S. households and non-profit organi-

zations in the Flow of Funds dataset, and our proxy for ql is the series on the value of residential

land estimated by Davis and Heathcote (2007) and kindly updated by them through 2009Q1. These

are the data plotted in Figure 1 as shares of GDP. The 1980Q1-1996Q4 average ratios of the value

of residential land and net credit market assets relative to GDP are 0.477 and -0.313 respectively.

The two ratios are fairly stable around these averages throughout the 1980Q1-1996Q4 period, in

contrast with the sharp trends they display after 1996.

As described in the Introduction, we construct a macro estimate of the household leverage

ratio, or the loan-to-value ratio, by dividing net credit market assets by the value of residential

land. Then, we set the value of κl by combining the 1980Q1-1996Q4 average of this ratio with the

calibrated value of R (assuming also that the collateral constraint was binding in the pre-financial-

innovation era). This yields κl = 0.659/1.0266 = 0.642. The fact that net credit assets and land

values were fairly stable prior to 1997, as shown in Figure 1, supports the idea of using this constant

value of κl to characterize the pre-financial-innovation regime.

The value of κh is set equal to the 2006Q4 leverage ratio, hence κh = 0.926. This represents the

largest leverage ratio that the economy was able to support in the new financial regime just before

the financial crisis hit. Note, however, that κh does not always bind in the new regime. First, as

the economy moves from the pre-financial-innovation regime to the regime with stochastic κ, agents

build up debt over time, and hence the equilibrium leverage ratio does not jump to its new ceiling

immediately as the new regime begins. Second, the new regime features two possible realizations

of κ that are occasionally binding, so κh only binds with some probability in the long-run.12

The value of σ is set to σ = 2.0, the standard value in quantitative DSGE models, and β is set

so that the pre-financial-innovation model matches the observed standard deviation of consumption
12Our calibrated values of κh and κl are in line with the parameter values that Favilukis, Ludvigson, and Nieuwer-

burgh (2010) chose to calibrate their collateral constraint (0.75 in their tight credit regime and 1 in their loose credit
environment).
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relative to output over the 1980Q1-1996Q4 period, which is 0.8. This procedure yields β = 0.91.

Notice that, given the calibrated value of R, the rate of time preference exceeds the real interest

rate (i.e., βR = 0.934 < 1). This is important because it ensures the existence of an ergodic

distribution of bond holdings given that asset markets are incomplete. Intuitively, this occurs

because of the interaction between the precautionary savings motive, which pushes for increasing

bond holdings, and the incentive to tilt consumption towards the present, and hence reduce bond

holdings, because βR < 1. Consumption tilting and precautionary savings will also play a key role

later in our analysis of the macro dynamics induced by financial innovation.

Using the 1980Q1-1996Q4 average of the value of residential land to GDP, the value of R, and

the condition that arbitrages the returns on land and bonds, which follows from the optimality

conditions (12)-(13), we obtain and implied value for α.13 This yields α = 0.0251.

We normalize mean output to 1 (since L = 1 and the unconditional mean of z also equals 1), and

calibrate the model so that the observed average pre-financial-innovation ratios of consumption (c̄)

and bonds (b̄) to GDP are consistent with the resource constraint in the average of the stochastic

stationary state for that financial regime.14 The observed average ratio of net credit assets to

GDP in the 1980Q1-1996Q4 period yields b̄ = −0.313. In the case of the consumption-GDP ratio,

the data show a slight trend, so we use the last observation of the pre-financial-innovation regime

(1996Q4). This implies c̄ = 0.670. To make these values of b̄ and c̄ consistent with the resource

constraint in the average of the stochastic steady state, we need to take into account the fact that

investment and government absorption are included in the data but not in the model. To adjust

for this discrepancy, we introduce a fixed, exogenous amount of autonomous spending A, so that

the long-run average of the resource constraint is 1 = c̄ + A − b̄(R − 1)/R . Given b̄ = −0.313,

c̄ = 0.6707 and R = 1.0266 the value of A follows as a residual A = 1− c̄ + b̄(R− 1)/R = 0.321.

The Markov process for z is set to approximate an AR(1) process (ln(zt) = ρ ln(zt−1)+et) fitted

to HP-filtered real U.S. GDP per capita using data for the period 1965Q1-1996Q4. The estimation

yields ρ = 0.869 and σe = 0.00833, which imply a standard deviation of TFP of σz = 1.68 percent.

We use Tauchen and Hussey (1991)’s quadrature method to construct a Markov approximation to

this process assuming a vector of 9 realizations. The transition probability matrix and realization

vector are available on request.
13Since the model with a single financial regime set at κl (i.e., the pre-financial-innovation regime) yields a collateral

constraint that is almost always binding and a negligible excess return on land, we use the approximation E[Rq] ≈ R,
and then conditions (12) and (13) imply: α = (ql/zlα)[R− 1 + β−1(1− βR)(1− κl)]

14Consumption and GDP data are from the International Financial Statistics of the IMF.
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Table 1: Parameters

β Discount factor (annualized) 0.91

σ Risk aversion coefficient 2.0

c Consumption-GDP ratio 0.670

A Lump-sum absorption 0.321

r Interest rate (annualized) 2.660

ρ Persistence of endowment shocks 0.869

σe Standard deviation of TFP shocks 0.008
α Factor share of land in production 0.025
L Supply of land 1.0
κh Value of κ in the high securitization regime 0.926

κl Value of κ in the low securitization regime 0.642

F a
hh True persistence of κh 0.964

F a
ll True persistence of κl 0.964

nhh
0 ,nhl

0 Priors 0.3

The counters of the beta-binomial distribution that determine the initial priors of F s
hh and F s

ll

are calibrated as follows: First, for simplicity, we impose the symmetry condition n0 = nhl
0 = nhh

0 =

nll
0 = nlh

0 , so that there is only one counter to calibrate. Second, we calibrate n0 so that the model

matches an estimate of the observed excess return on land relative to the risk free rate for 1997Q2,

which corresponds to the one-period-ahead expected excess return in the first date of the financial

innovation experiment (date 1 in the experiment corresponds to 1997Q1). The data proxy for this

excess return is the 1997Q2 spread on the Fannie Mae residential MBS with 30-year maturity over

the T-bill rate. This excess return was equal to 47.6 basis points.15 The model matches this excess

return with n0 = 0.3.

Since the model calibration is at a quarterly frequency, ideally we would like to use excess returns

for securities with a quarterly maturity. However, residential MBSs do not have such short-term

maturities, because the underlying assets tend to be long-term mortgages. Still, using the spread

for the 30-year Fannie Mae MBS is useful because it actually makes it harder for the model to

generate optimism. This is because securities with a quarterly maturity would likely have sharply
15The source of this excess return quote is Bloomberg. One complication that arises with using the 30 year MBS

is the prepayment risk that tends to widen spreads. We use “option-adjusted spreads” from the same source that
are adjusted for prepayment risk. The unadjusted spread is 117.6 basis points. We use the adjusted spread since we
do not explicitly model prepayment risk, and hence we cannot expect the model to capture the portion of the spread
due to this risk.
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lower spreads than the 30-year securities, and thus the latter can be taken as an upper bound

for the more accurate spreads. But higher spreads imply higher values of n0, which weaken the

mechanism generating optimism and pessimism in the learning process. Thus, by calibrating the

priors to match the excess returns of the 30-year MBS we are looking at a “lower bound” of the

optimism that the model can generate.

Figure 5 shows the density functions of the initial priors of F s
hh and F s

ll for Beta distributions

with three different (nii
0 , nij

0 ) pairs. The Beta(0.3, 0.3) distribution corresponds to the baseline

calibration. In this case, the priors have a U-shaped distribution with most of the mass concentrated

around 0 and 1. Since this case assumes n0 = nii
0 = nij

0 , the distribution is symmetric with a mean

of 0.5 (and a variance of 0.156). By contrast, consider the Beta(1, 1) distribution, which implicitly

assumes that at least one observation of switch and continuation of each κ regime has been observed.

This distribution also has a mean of 0.5, but the distribution is uniform over the (0,1) range, and

it has a much lower variance than the Beta(0.3, 0.3) distribution (0.083 v. 0.156).

Figure 5: Beta Distributions
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Beta(1,1)
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Notes: This figure plots the probability density function of the Beta distribution with different nii
0 and nij

0 where

Beta(nii
0 , nij

0 ).

Figure 5 also plots the Beta(40, 1) distribution, which matches the beliefs about F s
hh that the

learning process generates at period 40 of the financial innovation experiment. At this point, agents

have observed 40 transitions from κh to κh and thus form beliefs characterized by a distribution

that is highly skewed to the right, with most of the mass concentrated around 1. This reflects the

high degree of optimism that the learning process can create.
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We illustrate further how the initial priors yield optimistic and pessimistic beliefs by studying

the evolution of the conditional means of the Beta distributions of F s
hh and F s

ll over time as the

sequence of realizations of κ is observed. Setting symmetric initial priors for F s
hh and F s

ll with a

low value of n0, as with the Beta(0.3, 0.3) baseline, implies that agents conjecture that there are

four “most likely” scenarios before the first realization of κ is observed: a) Both the high- and low-

leverage regimes are extremely persistent, i.e., F s
hh ≈ 1 and F s

ll ≈ 1; b) The high-leverage regime

is extremely persistent and the economy switches to the low-leverage regime rarely and for a short

time, i.e., F s
hh ≈ 1 and F s

ll ≈ 0; c) The low-leverage regime is extremely persistent and the high-

leverage regime occurs rarely and has a short duration, i.e., F s
hh ≈ 0 and F s

ll ≈ 1, d) Neither regime

is persistent and the economy constantly moves between the two, i.e., F s
hh ≈ 0 and F s

ll ≈ 0. After

observing the first few realizations of κh, however, the agents can rule out scenarios c) and d).

Figure 6: Evolution of Beliefs under Alternative Priors
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Notes: Beta(0.3, 0.3) corresponds to our baseline calibration while Beta(1, 1) shows beliefs if the priors were uniformly

distributed.

Figure 6 plots the conditional averages of F s
hh and F s

ll corresponding to the beliefs in each of the

48 periods of the learning experiment, using both Beta(0.3, 0.3) and Beta(1, 1) as date-0 priors.

The plots start at date 1 after the first realization κh has been observed. The bottom panel shows

that, as discussed before, unless the economy switches to the low-leverage state, the agents cannot

learn about the persistence of that state. Hence, their beliefs about this state remain unchanged

at the initial prior of 0.5 for the first 40 periods. In contrast, the top panel shows that observing
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the long spell of κh leads agents to update their beliefs about the persistence of this regime, and

they become optimistic very quickly. In the baseline Beta(0.3, 0.3) case, the average F s
hh moves

very close to 1 in just one quarter, while with the Beta(1, 1) priors the buildup of optimism is more

gradual, but still after 8 quarters the average F s
hh approaches 90 percent. This rapid adjustment of

beliefs also occurs with the surge of pessimism that follows the first observation of κl in period 41:

With Beta(0.3, 0.3) priors, agents update their average average F s
ll from 0.5 to almost 1 in period

41, and with the Beta(1, 1) priors the change is slower but again by period 48, the mean of F s
ll is

approaching 90 percent.

It is important to note that neither Beta(0.3, 0.3) or Beta(1, 1) introduce bias in the initial

priors in favor of optimism or pessimism. This differs from the approach followed by Cogley and

Sargent (2008), who studied the implications of inducing initial pessimism into the agents’ priors.

In our calibration, agents are not optimistic prior to period 1 because Beta(0.3, 0.3) yields initial

beliefs with average continuation probabilities of F s
hh = F s

ll = 0.5. This Beta distribution does

imply that agents’ initial beliefs consider as “most likely” one of the four initial scenarios a)-d)

mentioned above (i.e., they believe that either the switches in κ will be infrequent, as in scenarios

a)-c), or that there will be a switch every period, as in scenario d)), but there is no initial bias in

favor of either κh or κl.

At this point we have calibrated all of the parameters that are needed for solving the model.

Notice in particular that the true transition probability matrix of κ (F a) is not needed. Solving

the COPs of the agents requires the sequence of beliefs about the transition probability matrix

({f(F s | κt)}T
t=0), which is determined with the parameters we already set. Still, calibrating the

true transition probability matrix is necessary if we want to evaluate the macroeconomic effects of

the imperfect information friction by comparing the solutions against the standard RE solution in

which the “true” transition matrix of the financial regimes is known.

We calibrate F a
hh so that the mean duration of high-leverage regimes is in line with the estimated

duration of credit boom episodes in industrial economies, which Mendoza and Terrones (2008)

estimated at about 7 years. This implies F a
hh = 0.964. With this calibration of F a

hh and conditional

on observing κh at date 1, the probability of observing κh the following 39 periods is 0.241. Thus,

the “true” probability of observing the long spell of κh that we assume in our financial innovation

experiment, and that produces substantial optimism, is about 1/4. We assume a symmetric process

by setting F a
ll = 0.964.
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An interesting implication of calibrating the “true” process of κ in this way is that the model

features a long-run credit cycle consistent with average duration features of actual credit cycles,

so that agents eventually learn that the economy will display a credit cycle with the duration and

frequency that is typical of industrial countries. In the short-run, however, their expectations can

deviate sharply from these regularities, along the lines of Reinhart and Rogoff (2009) “this-time-

is-different” argument.

3.2 Quantitative Findings

The quantitative analysis is based on four sets of results derived from the numerical solutions:

Long-run distributions of bond positions, forecast functions of macroeconomic aggregates, average

changes in these aggregates at the “turning points” of the learning experiment, and expected excess

returns. We compare the results of the learning model with the RE model (i.e., a model which

retains the collateral constraint with its credit externality and debt deflation mechanism, but does

not have a learning friction) and with a fixed price-learning (FPL) model in which land in the

collateral constraint is valued at a constant price set to the long-run average (i.e., a model that

retains the learning friction but removes the credit externality and the Fisherian deflation channel).

In this case, the collateral constraint becomes bt+1

R ≥ −κtq̄lt+1.

3.2.1 Ergodic distributions

Figure 7 plots “conjectured” ergodic distributions of b for dates 1, 8, 40, 41 and 48 in the learning

model and the true ergodic distribution of the RE model. We label the former as “conjectured”

because the actual ergodic distribution of the learning model is the same as the one of the RE

model, since in the long-run agents learn the true regime-switching process F a, and thus the long-

run equilibrium is the same as under rational expectations. The “conjectured” ergodic distributions

for the other dates in the learning experiment are the agents’ projections, or conjectures, of what

the long-run equilibrium would look like if they forecast the dynamics of the financial regime using

their current beliefs (i.e., these distributions assume that the corresponding period’s beliefs about

the transition probability matrix of κ are correct). Appendix B provides details on the computation

of long-run distributions in the learning and RE models.

The conjecture that the beliefs are correct is clearly not valid in the learning model’s equilibrium

dynamics, because in the short-run beliefs do change from one period to the next and deviate sharply

from the true transition probability matrix. Plotting the conjectured and RE long-run distributions
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is useful, however, for illustrating the impact of the optimism and pessimism driving the model’s

dynamics on the agents “willingness” to borrow or save.

Figure 7: Ergodic Distributions of Bond Holdings
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Notes: This figure plots the ergodic distribution of bond holdings implied by the learning model in periods 1 (initial

period), 8, 40 (peak of optimism), 41, and 48 as well that of the rational expectations model marked by “RE.”

Consider first the conjectured distribution for period 1. Recall that the mean of bond holdings

pre-financial-innovation was -0.31, so we can tell that already by period 1 agents conjecture that

the support of the long-run distribution of bonds will shift to the left (i.e. support higher debt

levels), but not yet by as much as in the long-run RE equilibrium.

Compare now the RE ergodic distribution with the conjectured ergodic distribution for period

40. Large debt ratios (bond holdings in the interval [-0.62, -0.48]) are never a long-run equilibrium

outcome in the RE model, but they are projected to be on the basis of the agents’ period-40 beliefs.

But this happens also much earlier than date 40 because, as shown before, it takes observing only

the first few realizations of κh for agents to turn very optimistic relative to the RE transition

probabilities. By period 8 agents already conjecture that debt positions in the [-0.58,-0.50] range

are probable long-run equilibria, while in the RE ergodic distribution they have zero probability.

As optimism builds, the highest debt conjectured to have positive long-run probability rises,

and the mass of probability assigned to debt levels larger than the largest debt under rational
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expectations also rises. This process peaks at the peak of the optimistic phase in date 40. In short,

during this phase, agents are willing to “overborrow” (take on more debt at the left tail of the

conjectured ergodic distributions of b) than what is ever optimal in the RE model, and “undersave”

(build less precautionary savings, or conjecture they can attain a lower average of b) than what is

optimal in the RE model. When the first realization of κl hits and the pessimistic phase starts,

the opposite effects take over and they peak at date 48. By then, agents are “underborrowing” and

“oversaving” substantially.

3.2.2 Forecast functions

Forecast functions are useful for illustrating the model’s equilibrium dynamics during the 48 periods

of the learning experiment. Recall that in the calibration we defined a trajectory of realizations κT

with T = 48, the first 40 are equal to κh and the last 8 are equal to κl, and we used the calibrated

values of the learning process to compute the sequence of beliefs
[
f(F s | κt)

]48

t=1
. Given this infor-

mation, we solved the COPs of each of these 48 periods to obtain bond decision rules associated

with each set of beliefs. Given these bond decision rules, we constructed forecast functions that

trace the dynamics of the expected values of the endogenous variables along the model’s equilibrium

path by chaining the decision rules that correspond to each period’s beliefs and each realization of

κ.

Intuitively, the algorithm that computes the forecast functions uses a law of motion for the

evolution of the probability of the economy being in each triple (b, z, κ) as we move from date 0

to date 48. This law of motion can be computed for any triple of initial conditions (b, z, κ) in the

state space, but we are interested in the triple that approximates the state of the U.S. economy in

1996Q4 (i.e. the initial conditions at the beginning of date 1 in the financial innovation experiment).

Thus, we start at date 1 with all the probability concentrated in the coordinate of initial conditions

(b1, z1, κ
h) where b1 = −0.345 (the observed net credit assets as a share of GDP for 1996Q4) and

z1 = 1. Then, for each subsequent date, the value of κ is set to the corresponding realization in

the κT sequence (κh for t = 2, ..., 40 and κl for t = 41, ..., 48), the transitions across values of z are

computed with the Markov process of z, and the transitions across points in the state space of b

are governed by the policy function b′t(b, z, κ) of the date-t COP. The procedure is similar to the

standard forecast functions of a RE model, except that the policy function is time-varying because

it varies with each set of beliefs in the sequence
[
f(F s | κt)

]48

t=1
(see Appendix B for details).
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Figure 8: Forecast Functions
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Notes: This figure plots the forecast functions of bond holdings-output ratio, price of land, consumption, and

gross saving flow-output ratio (GSF/y) as percentage deviations from their long run means implied by the rational

expectations scenario. GSF/y is calculated as ((b′/R) − b)/y. Realizations of κ are as described in the text, κh in

the first 40 periods and κl in the remaining 8. Date-0 b′/y is the 1996:Q4 observation from data (since debt data

are end of period basis), so that the date-1 b′/y is the first endogenous choice of b′ under κh, given an initial state

determined by the data point from 1996:Q4. “Fixed q” refers to the scenario with the asset price on the right hand

side of the credit constraint fixed at 0.456 which is the long run average of prices.
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Figure 8 plots the forecast functions for the choice of bond holdings as a share of output (b′/y),

consumption, the price of land, and the savings rate (GSF/y) as percent deviations from their

long-run means in the learning, RE and FPL models. Recall that long-run means in the learning

and RE models are identical because the ergodic distributions of the two are the same. The

solid (blue) lines correspond to the learning model, the dashed (red) lines are for the FPL model,

and the dotted (black) lines represent the RE model. Note that even the RE model generates

some dynamics in this exercise, because the initial condition b1 is not the long-run mean of the

new financial regime with stochastic κ, and also because we are using a particular time series of

realizations of κ (instead of averaging across possible κ realizations at each date t). Thus, these

forecasts functions are conditional on the particular history κT that we assumed.

The forecast functions for bonds in the top-left panel show that during the optimistic phase

agents consistently borrow more in the learning model than in both the RE and the FPL models.

In the first two periods after financial innovation is introduced, the three models predict similar

debt dynamics, but after that the optimism and the debt-deflation feedback loop at work in the

learning model produce a much larger decline in bond holdings, while the bond dynamics in the

RE and FPL models are similar.16 Bond holdings as a share of output decline by as much as

23 percentage points below the long-run average at the peak of optimism of the learning model

in period 40. These dynamics are in line with the downward trend in net credit market assets

observed in the data. Interestingly, the combination of the learning friction and the debt-deflation

channel delivers a much stronger decline in assets than the alternatives that retain only one of the

two mechanisms. In the RE model there is no buildup of optimism to push for overborrowing, and

in the FPL model there is no endogenous feedback from higher land prices into higher collateral

and thus higher borrowing ability.

The switch to the pessimistic phase in period 41 brings about a large correction in bond holdings,

which bounce back about 58 percentage points in the learning model. An adjustment of this

magnitude is an equilibrium outcome, despite CRRA preferences and incomplete markets, because

the arrival of the first realization of κl at date 41 is almost like a large, unexpected shock, in

the sense that by date 40 agents believed that the state κh in which they had been living was

almost absorbent (i.e., the average of F s
hh at date 40 was very close to 1). Moreover, this large κ

16This occurs because (a) in the FPL model the price is fixed at the long-run average that is very similar to the
RE model, and (b) the RE price displays very small deviations from its long-run average. As a result, and since the
values of κ are the same in both models, the debt allowed by the collateral constraint in both models is about the
same.
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shock triggers a large Fisherian deflation effect (see below), which contributes to enlarge the debt

adjustment. Bond holdings also jump up in the RE and FPL models, because of the switch from

κh to κl in a state in which the collateral constraint was binding. But the adjustments are much

smaller. The debt reversal in the RE case is about half the size of that in the learning model, and it

reflects the effect of the debt-deflation mechanism in the absence of a switch to pessimistic beliefs.

The FPL model yields the smallest correction, which isolates the effect of the switch to pessimistic

beliefs without amplification due to the Fisherian deflation channel.

As agents overborrow during the optimistic phase in the learning model, they also bid more

aggressively for the risky asset. This increases the price of land significantly, as shown in the

top-right plot of Figure 8. This contrasts with the RE case, in which the price of land declines

relative to the pre-financial-innovation price that prevailed at date 0. This occurs because the

price of land in the RE model is falling to a lower long-run average in the financial innovation

regime. In turn, the mean price of land in the RE model (with stochastic κ) is lower than in the

pre-financial-innovation regime (with a constant κl) because, even though agents know the true

distribution of κ, they now face uncertainty with regards to κ, since it is now a random variable.

Hence, financial innovation implies a higher mean κ but also a higher variance of κ. The former

enables the agents to borrow more, and therefore demand more of the risky asset and bid up its

price, but the latter gives them an incentive to hold less of the risky asset, because the new financial

environment is riskier and they are risk averse. We find that, if the gap between κh and κl is small,

the “mean effect” dominates leading to higher land prices in the RE model, but as the gap widens,

the “variance effect” becomes stronger and the mean land price in the RE model is lower than in

the pre-financial-innovation equilibrium (as is the case in our baseline calibration).

The FPL model generates a larger asset price boom during the optimistic phase and a smaller

price crash compared with the other two models. This is because the FPL model rules out the

Fisherian deflation by construction, and hence at date 41 the downward spiral on land prices,

collateral values, and debt that is at work in the learning model is not active. Moreover, the fixed

land price for collateral valuation also serves as a limited asset price guarantee, which produces a

larger price boom during the optimistic phase than in the learning and RE models. The guarantee

is limited in the sense that it is not a guarantee on the price at which land is traded, but only on

the price at which land is valued for collateral. Accordingly, the FPL model produces a smaller

reversal in debt in period 41, as agents are able to borrow more than in the other two models
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because of the constant land price for collateral. For the same reason, the larger land price increase

in the optimistic phase does not feed back into a large debt expansion.

The center and bottom panels of Figure 8 show the forecast functions for the savings rate and

consumption. Because of the large magnitude of the changes that occur at date 41, we split these

plots into two pairs. The center pair shows dynamics for the full 48 periods of the experiment.

The bottom pair shows only the first 30 periods. In studying these plots, it is critical to recall that

the forecast functions show the effects of the learning experiment on macro variables for the given

history of realizations κT , averaging across TFP shocks, and starting from average productivity

and the 1996Q4 observation of b.

Consider first what consumption dynamics would look like in a perfect-foresight model where we

switch from the constrained pre-financial innovation steady state with κl to a hypothetical financial

innovation deterministic steady state for a regime with κh. The two steady states are well-defined

because βR < 1, and hence the steady state of bonds is b = −κq (κ), where q(κ) is the steady

state land price, which is increasing in κ.17 Thus, the increase in κ yields a lower steady state

for b (higher steady state debt) because both κ and q(κ) increase. But higher steady state debt

means lower steady state consumption, since the non-financial wealth of the economy is invariant

to changes in κ and the debt has to be serviced. Thus, financial innovation tilts the time profile of

consumption. On impact, when κ is first increased, and for a few periods after that, consumption

rises above the pre-financial-innovation level, but then it drops monotonically until it reaches its

new steady state below the pre-financial-innovation level. This consumption tilting effect is also

at work in the stochastic model, but is weaker because of the precautionary savings motive, which

implies a smaller decrease in bond holdings and a smaller drop in consumption.

Now consider the forecast functions of the learning, RE and FPL models showing consumption

dynamics in the center- and bottom-right plots of Figure 8. The fact that the dynamics for the first

40 periods are similar in all three models indicates that the consumption tilting effect dominates

those dynamics. This is because consumption converges quickly to its new long-run average (which

is identical in the learning and RE models, and very similar in the FPL model). There is over-

consumption in the learning model relative to the RE and FPL models in the early stages after

the switch to κh, because of the larger increase in debt (i.e., decline in bond holdings). In the first

two periods, consumption is about the same in all three models, but the overconsumption in the
17The closed-form solution for the steady state land price with the collateral constraint binding is: q(κ) =

(αβ)/ [β(R− 1) + (1− βR)(1− κ)] .
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learning model is clear between the 3rd and 10th periods. After period 10, however, the dynamics

driven by consumption tilting dominate in all three models. Consumption then remains smooth

(as we are averaging across TFP and keeping κ constant at κh), until we arrive at date 41 and κ

switches to κl.

At date 41, as explained earlier, the κ switch is almost like a large, unexpected shock in the

learning and FPL models. In the learning model, which also has the Fisherian deflation, this

produces a dramatic collapse in consumption. This is in line with the findings in Mendoza (2010)

and Mendoza and Smith (2006), showing that in Fisherian deflation models there are equilibria

outside the ergodic distribution of wealth, where the economy could land as a result of unexpected

shocks, in which the impact response of consumption can be around -80 percent. In those models,

however, precautionary savings and perfect information about the Markov processes of shocks rule

out consumption drops of that magnitude from the equilibrium dynamics, while in our model the

learning friction allows us to support them as short-run equilibria.

The RE and FPL models also produce large consumption declines when the economy switches

to κl, but both are significantly smaller than in the learning model. In the RE model this is again

because precautionary savings and the lack of overborrowing prevented a large accumulation of

debt in the optimistic phase. In the FPL model the smaller consumption drop occurs because there

is no Fisherian deflation of collateral values, which yields the smallest correction in debt, and hence

implies the smaller consumption drop.

Figure 9 shows the evolution of the shadow value of the collateral constraint, expressed in

terms of an implicit endogenous interest rate premium that measures the difference between the

stochastic intertemporal marginal rate of substitution in consumption (u′(ct)/βEs
t [u

′(ct+1)]) and

the real interest rate R. Using condition (12), we can express this premium as µt/(u′(ct) − µt).

Thus, if the constraint does not bind, there is no interest rate premium, and when it binds the

premium rises as the constraint becomes more binding.

The dynamics of the interest premium confirm our previous argument stating that, when finan-

cial innovation starts, the constraint becomes nonbinding, and then it begins to bind after some

time. In particular, in the baseline learning model the constraint begins to bind after period 5.

Then it increases monotonically, at a decreasing rate, to converge to about 6 percent at the peak

of the optimistic phase. In contrast, the FPL model generates a larger premium of up to 7 percent,

while the RE model generates a premium of just above 2 percent in the optimistic phase. This is

natural because in the FPL model rising land prices do not contribute to relax the borrowing limit,
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and in the RE model the constraint is less binding because individuals desire to save more with

rational expectations than with optimistic beliefs.

Figure 9: Interest Rate Premium
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Notes: This figure plots the interest rate premium that represents the difference between the intertemporal MRS

and the risk-free rate, which can be simplified to µt
u′(ct)−µt

. The premium in period 41 is 7064, 199, and 80 percent

in baseline, RE, and FPL scenarios, respectively.

When the switch to the pessimistic phase takes place at date 41, there is a large jump in

interest premia, in line with the large reversals in debt and consumption. The correction is the

largest in the learning model, followed by the RE model, and the FPL model last. After date 41,

however, the constraint becomes nonbinding for 4 periods in the learning model and for 1 period in

RE. Afterwards the interest premia become positive, hovering around 7 percent in the FPL model

throughout the rest of the experiment and gradually increasing to reach 8.8 and 8.2 percent in

learning and RE models respectively.

3.2.3 Turning Points

Table 2 lists short-run changes in average bond-output ratios and land prices, calculated with the

data used to construct the forecast functions, at the key turning points: the peak of optimism at

date 40 relative to the pre-financial-innovation initial conditions, and at the end of the learning

experiment relative to the peak of optimism (which we label as financial crisis). The figures shown

in this table are the differences in the levels of b/y and q projected by the forecast functions, but

not expressed in deviations from long-run means (as was the case in the plots of Figure 8).
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Table 2: Average Changes at the Turning Points

Data RE FPL Baseline

Peak of Optimism:

E[(b/y)40 − (b/y)0] -0.355 -0.083 -0.087 -0.246

E[(ql/y)40 − (ql/y)0] 0.280 -0.025 0.307 0.147

Financial Crisis:

E[(b/y)48 − (b/y)40] 0.023 0.122 0.133 0.278

E[(ql/y)48 − (ql/y)40] -0.149 0.013 -0.303 -0.146

Note: Data column reports the difference between 2006Q4 and 1996Q4 observations in the top panel and the

difference between 2008Q4 and 2006Q4 observations in the bottom panel. In columns 2-4 the realizations of κ are

set to the path described in the text. Period 0 in all three scenarios corresponds to the 1996Q4 data observations,

which are the initial conditions. qL/y is the aggregate market value of residential land divided by output.

This table illustrates two main results. First, the learning model can explain a large fraction

of the observed increase in debt and land prices before the financial crisis. Second, the learning

model generates significantly more debt in the optimistic phase than the RE or FPL models, and

a much larger land price increase than the RE model.

The learning model can explain 69 percent of the increase in household debt observed in the

data, since in the model the b/y ratio falls by almost 25 percentage points v. 36 percentage points

in the data. The decline in bond holdings in the learning model is about 16 percentage points

of GDP larger than in the RE or FPL models. The comparison with the RE model shows again

that financial innovation, when agents are uncertain about the true nature of the new financial

environment, produces significant overborrowing relative to what RE predicts. The comparison

with the FPL model shows, also in line with our previous findings, that the interaction of the

learning friction with the debt-deflation channel has significant quantitative implications for the

size of the credit boom that the model can produce.

Comparing the changes in land prices, we find that the baseline learning model accounts for

about 53 percent of the land price boom observed in the data (the increase in the price of land in

the model reaches almost 15 percentage points at date 40, v. 28 percentage points in the data).

In line with what we noted in the comparison of forecast functions, the RE model yields a slight

fall, instead of an increase, in the price of land during the optimistic phase, and the FPL model

generates a larger price increase than the learning model.
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Consider now the changes in bond holdings and land prices during the financial crisis. The

baseline learning model generates a large debt reversal of about 28 percentage points (and this

after an even larger reversal between periods 40 and 41, as shown in Figure 8). By contrast, in the

data the correction was only 2.3 percentage points. The model clearly overestimates the reversal

in debt, but part of the discrepancy is due to the fact that the bond in the model is a one-period

bond while the average maturity of household debt data is significantly higher than a quarter. This

makes an important difference because in the model agents repay and re-finance their debt every

period, but in the data this is not the case, particularly with long-term debt contracts such as

30-year mortgages. Hence, in the model, a switch to the low-leverage regime leads to an abrupt

decline in debt, while in the data this is not going to affect immediately the outstanding stock of

long-term debt.

The model does a good job at matching the observed decline in land prices during the financial

crisis (14.6 and 14.9 percentage points in model and data respectively). This is after an initial

price collapse between periods 40 and 41 that is significantly larger than what the model predicts

between periods 40 and 48. In contrast, the FPL model now produces a larger price decline, about

twice as large as in the data, and the price change in the RE model is again small and in the

opposite direction from both the learning and FPL models.

3.2.4 Excess Returns on Land

Next we investigate the projections of excess land returns that underlie the discounting of future

land dividends in land pricing, in order to illustrate further the agents’ perception of the riskiness of

land during the optimistic and pessimistic phases. Figure 10 plots the t + j-period-ahead expected

excess returns for j =1,..,50 periods ahead of three initial dates t =1, 40, and 41. These are

expectations that agents form looking into the future given beliefs and decision rules as of periods

1, 40 or 41. In each scenario, we set the initial state of b to the mean bond holdings predicted by

the forecast function in Figure 8 for the corresponding date, κ to its corresponding value in the

history κt, and TFP to its mean value.

Focusing on expected excess returns projected as of date 1, in the top-left panel of Figure 10,

the excess returns in the RE model exceed those of the baseline learning setup for the first 13

periods. Staring from period 14, this ordering reverses. This pattern justifies the result showing

that the land price at date 1 is lower in the RE model than in the baseline learning model (because

agents in the latter expect relatively lower excess land returns in the first 13 periods, which carry
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more weight in discounting land dividends–and recall that land dividends are simply driven by the

exogenous TFP process, which is the same in all three models we are comparing). The FPL model

yields expected excess returns that lie significantly below both the RE and baseline models, and

this is consistent with the higher date-1 land price produced by the FPL model (see Figure 8). The

FPL model has lower excess returns because the removal of the debt-deflation channel weakens the

direct and indirect effects of the collateral constraint on excess returns shown in Equation (10).

Figure 10: Excess Returns
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Notes: Expected excess returns for 50 periods ahead of initial dates t =1, 40, and 41, computed using the beliefs and

associated equilibrium pricing function of the each date’s optimization problem. The expected returns are conditional

on the bond holdings predicted for each initial date by the forecast functions of Figure 8, the mean value of TFP

(z = 1), and the value of kappa indicated in the history of realizations for each date t.

As agents turn very optimistic after observing the high-leverage regime persist for 40 periods,

they become more willing to hold risky land at lower excess returns, and thus expected excess

returns ahead of date 40 are lower in all three models relative to what they were ahead of date

1. Moreover, projected returns in the baseline learning model become significantly smaller than
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in the RE model (see the top-right panel of Figure 10), and the FPL model predicts significantly

smaller excess returns than both the RE and the learning model. This is because in the FPL model

beliefs turn as optimistic as in the learning model, but the removal of the debt-deflation mechanism

reduces risk premia on holding land.

In period 41, when the switch to the low-leverage regime takes place, the ordering of projected

excess returns across the three models reverses (see the bottom panel of Figure 10). Excess returns

in the RE model are projected initially to be higher than in the baseline learning model, but beyond

seven periods ahead of date 41 the learning model predicts higher excess returns. Moreover, now

the FPL model is the one that predicts the sharpest increase in excess returns in the first periods

ahead of date 41, and then converges to significantly lower excess returns than both the RE and

learning models. This pattern of projected excess returns is in line with the ranking of asset prices

shown for date 41 in Figure 8, in which the fall in the price of land is the largest in baseline learning

model, followed by the RE model, and the FPL model last.

3.2.5 Sensitivity Analysis

We now conduct a sensitivity analysis to study how changing the model’s key parameters alters

the magnitude of the turning point effects we just discussed. We focus on changes in the initial

priors, the values of κh and κl, the discount factor and the interest rate. Columns 3 to 8 of Table 3

report the results, and Column 2 includes the results for the baseline learning model. Note that, in

general, the parameterizations that generate larger booms during the optimistic phase also generate

larger busts in the financial crisis.

Table 3: Sensitivity

Baseline n0 = 1 n0 = 0.1 κl = 0.7 κh = 0.9 β = 0.92 R = 1.02

E[(b/y)40 − (b/y)0] -0.246 -0.095 -0.276 -0.250 -0.236 -0.250 -0.259

E[(ql/y)40 − (ql/y)0] 0.147 -0.011 0.180 0.151 0.154 0.150 0.165

E[(b/y)48 − (b/y)40] 0.278 0.145 0.307 0.226 0.267 0.256 0.266

E[(ql/y)48 − (ql/y)40] -0.146 -0.015 -0.179 -0.111 -0.154 -0.111 -0.123

Note: The first column reproduces the baseline scenario results. The exercise conducted is the same as that explained

in the note for Table 2 with different parameter values as indicated in column headings.
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The third column of the table shows the results resetting the initial priors to n0 = 1, which

corresponds to the case with uniformly-distributed priors. In this scenario, debt dynamics are

qualitatively the same as in the baseline scenario but the debt buildup is smaller (10 percentage

points v. 25 in the baseline). The price of land, however, is about 1 percentage point lower in

period 40 than in period 1, which is sharply at odds with the nearly 15 percentage points increase

produced in the baseline case. Moreover, we found that with uniform priors, the land price follows a

u-shaped trajectory in the optimistic phase, instead of the monotonically increasing path displayed

in the baseline case. The reason for this different trajectory is that, throughout the optimistic

phase, the beliefs about the persistence of the κh regime with the uniform priors are always lower

than those in the baseline. As explained before, the means of the two distributions of priors are

the same (0.5), but, with the baseline priors, agents turn optimistic more quickly after starting to

observe κhs. The mean beliefs are the same in period 0, but the differences in the shape of the

distributions of priors induce agents to become more optimistic, and faster, in the baseline scenario.

The more gradual buildup of optimism with the uniform priors affects the relative magnitude

of the effects of higher mean and higher variance of κ on land prices post financial innovation.

This explains the u-shaped trajectory of prices under uniform priors, because the effect of higher

variance dominates that of higher mean, causing a decline in the price of land, until agents have

turned optimistic enough. As agents observe more κhs, and sufficient optimism builds up, the higher

mean dominates the higher variance, but under uniform priors this requires a longer sequence of

κh than in the baseline case. Hence, if we look at an optimistic phase of more than 40 periods with

the uniform priors, we again find that at the peak of the optimistic phase the price of land would

be higher than in period 1.

The financial crisis effects on land prices and debt are also much weaker under the uniform

priors than in the baseline scenario, again because of the more gradual adjustment of the priors

(now in the switch to pessimistic beliefs and the buildup of pessimism). Debt rises by 15 percentage

points instead of 28, and the price of land falls only by 1.5 percentage points, instead of nearly 15

percentage points.

Reducing the initial priors to n0 = 0.1, which moves the distribution further away from uniform

priors than in the baseline case, produces larger debt and land price booms. The size of the debt

buildup is about 28 percentage points and the boom in the price of land reaches 18 percentage

points. With these priors, the Beta distribution of initial priors has even more mass concentrated

around 0 and 1 than in the baseline Beta(0.3, 0.3) case. Consequently, when agents observe the first
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κh they turn more optimistic than in the baseline case, and hence they borrow more and demand

more of the risky asset. Similar effects are at work, but in the opposite direction, in the pessimistic

phase, and hence with n0 = 0.1 we find a larger increase in bonds and a large drop in land prices

in the financial crisis.

In contrast with what we found when changing initial priors, the magnitude of the movements

in debt and land prices at the turning points in the baseline scenario are largely robust to changes

in the values of κh, κl, β and R around their baseline values. Increasing κl (see the fifth column of

Table 3) increases the size of the debt buildup and land price boom slightly. These slight changes

occur, even though we still have the same sequence of 40 realizations of κh at the same value as

in the baseline, because agents take into account the fact that with the higher value of κl the

low-leverage regime is not as low as it was in the baseline. This results in both a higher mean and

a lower variance of κ, which support both larger debt and higher land prices.

Reducing κh to 0.9 (sixth column of Table 3) reduces the size of the debt buildup slightly,

because of the tighter credit constraint in the high-leverage regime that the lower κh represents.

The land price boom is slightly larger, however, because the lower κh again reduces the variability

of κ. Thus, both higher κl and lower κh increase land prices more than the baseline because both

reduce the variance of κ, while they change the debt boom in opposite directions because higher κl

increases the mean of κ but lower κh reduces it (relative to the baseline case).

The last two columns of Table 3 show the results of the sensitivity analysis for higher β and

lower R. These two cases show similar implications, with both of them generating slightly larger

debt and land price booms than in the baseline case during the optimistic phase. In contrast, the

financial crisis effects with both higher β and lower R are slightly weaker than in the baseline.

4 Conclusion

The recent financial crisis in the United States was preceded by a decade of fast growth in household

debt, residential land prices, and leverage ratios, accompanied by far-reaching financial innovation

in terms of the introduction of new financial products and changes in the legal and regulatory

framework of financial markets. In this paper, we argued that financial innovation in an environment

with imperfect information and credit frictions was a central factor behind the credit and land price

booms that led to the crisis. To make this point, we examined the interaction between financial
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innovation, learning, and a collateral constraint in a stochastic equilibrium model of household debt

and land prices.

We used the model to study the quantitative implications of an experiment calibrated to U.S.

data in which financial innovation begins with a switch to a high-leverage regime, but agents do

not know the true regime-switching probabilities across high- and low-leverage regimes. Agents are

Bayesian learners, however, so in the long-run, after observing a long history of realizations of lever-

age regimes, they learn the true regime-switching transition probabilities. The collateral constraint

introduces Irving Fisher’s classic debt-deflation amplification mechanism, providing a vehicle for

the waves of optimism and pessimism produced by Bayesian learning to have amplification effects

on debt accumulation and land prices.

In our setup, a buildup of optimism is a natural consequence of financial innovation, because

agents start without a sufficiently long time series of data to correctly evaluate the riskiness of the

new financial environment. Calibrating the leverage regimes to data on the ratio of net household

debt to residential land values, and the initial priors to the excess returns on the 30-year Fannie Mae

MBS in early 1997, Bayesian learning predicts that agents would turn very optimistic, very quickly

between the mid-1990s and the mid-2000s, after observing only a few quarters of the high-leverage

regime.

The debt-deflation channel plays an important role because, as optimism built up and land

prices rose, the agents’ ability to borrow also grew. Similarly, when optimism turned to pessimism,

after the first observation of the low-leverage regime, which we dated to the beginning of 2007,

after the beginning of the sub-prime mortgage crisis in the Fall of 2006, the debt-deflation channel

amplified the reversals in debt and in asset prices. This occurs because fire-sales of land drive down

land prices and reduce the agents’ ability to borrow.

The interaction of the learning friction and the debt-deflation mechanism generates a substantial

amount of overborrowing, which accounts for over two thirds of the massive drop in net credit assets

of U.S. households, and over one half of the boom in residential land prices, observed between 1997

and 2006. Moreover, the model also predicts a credit crunch, a crash in land values, a collapse

in consumption and a surge in private savings when the economy experiences the first realization

of the low-leverage regime. In contrast, the size of the debt and price booms, and the subsequent

collapses, are significantly smaller in variants of the model that remove the learning friction (i.e.,

assuming rational expectations so that agents know the true regime-switching process of leverage
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regimes) or the debt-deflation mechanism (i.e., leaving the learning friction in place but assuming

that land prices used to value collateral are fixed at their long-run average).

Our work has important implications for the ongoing debate on financial reforms to prevent

future financial crises. First, since by definition the true riskiness of a truly brand-new financial

regime with new securities and new regulations cannot be correctly evaluated when the new regime

starts, and little or no data is available on its performance, exposure to the credit boom-bust process

we studied in this paper comes along with the potential benefits of financial innovation. Hence,

close supervision of financial intermediaries in the early stages of financial innovation is critical.

For example, capital requirements can be used to limit overborrowing, but they have to be used

carefully, because tight regulatory constraints introduce additional distortions that undermine the

benefits of financial innovation.

Second, our work suggests that there are limitations to the benefits of taxes or fees designed

to manage “macroprudential risk.” The argument for these taxes is that they work to correct the

overborrowing that results from a systemic credit externality, by which agents fail to internalize

the effect of their individual actions on the market prices that determine borrowing ability (by, for

example, affecting the value of collateral assets). We showed here, however, that overborrowing can

also result from optimistic beliefs, in our case due to imperfect information about the persistence

probability of a high-leverage regime under a new financial environment. Assuming that policy-

makers are as uninformed as households about how financial markets will perform after radical

structural changes, taxes on debt can address overborrowing due to the credit externality, but can-

not address overborrowing due to optimistic beliefs. Still, we do find that the overborrowing effect

of learning without the credit externality is about one half of that produced when both learning

and the credit externality are at work.

Third, the prospect of a new round of radical changes tightening the legal and regulatory

framework of financial markets in industrial countries, which will affect the types of securities that

will be available and the size of the markets in which they will trade, implies a new large financial

innovation shock. Hence, agents once again will have to evaluate the riskiness of the new financial

environment with subjective beliefs based on imperfect information. Thus, the risk exists that a

few years of slow credit growth and poor performance in asset markets can lead to the buildup of

pessimistic expectations that will hamper the recovery of financial markets.
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Appendix A Solution Method (NOT FOR PUBLICATION)

We solve the model by an Euler equation method that combines price and policy function iterations

using the land pricing equation and the general equilibrium conditions (12)-(15). By proceeding

in this way, instead of solving the agents’ Bellman equation, we avoid using aggregate states and

iterations to converge on the representative agent condition matching individual and aggregate laws

of motion for bond holdings.

The algorithm proceeds in these steps:

1. Define a history of realizations κT and calculate the sequence of posteriors {f(F s | κt)}T
t=1.

2. Take κ1 and the date-1 posterior f(F s | κ1) from the sequence in Step 1.

3. Guess a land pricing function q1(bt, zt, κt) and solve for the date-1 equilibrium conditions

(12)-(15) using the posterior density function, f(F s | κ1), and a policy function iteration

algorithm.

4. Use the resulting policy functions [b′1(b, z, κ), c1(b, z, κ), µ1(b, z, κ)] from Step 3 and the asset

pricing equation (11) to compute a new pricing function q̂1(bt, zt, κt). Note that we can use the

current beliefs in computing this forward solution because the Law of Iterated Expectations

still holds.

5. Compare q̂1(bt, zt, κt) and q1(bt, zt, κt), if they satisfy a convergence criterion then the decision

rules [b′1(b, z, κ), c1(b, z, κ), µ1(b, z, κ)] and the pricing function q1(bt, zt, κt) are the solutions

of the date-1 COP. If not, construct a new guess of the pricing function using a Gauss-Siedel

rule and return to Step 3.

6. Move to the date-2 with history κ2 and posterior f(F s | κ2), taken from Step 1, and return to

Step 3 in order to solve for the date-2 COP. Repeat for each date-t history κt and posterior

f(F s | κt) for t = 1, ...T solving each time for the corresponding date-t COP.

The passive Bayesian learning has important implications that can be useful in implementing

the above algorithm:

1. The solutions to each date-t COP are not functionally related (i.e., solving a particular date-t

problem does not require knowing anything about the solution for any other date). Thus,
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the model can be solved by solving each date-t COP independently.18 Still, we can speed

convergence if, whenever ||f(F s | κt+j)− f(F s | κt)|| is small enough under some metric, we

use for the date t + j COP initial guesses given by the date-t COP.

2. If j ≤ T is large enough for f(F s | κt+j) to converge to F a (for some convergance criterion),

the solutions for all dates t ≥ j collapse to a standard recursive RE equilibrium using the

true Markov process F a.

3. Since the full equilibrium solution of the intertemporal sequence of allocations and prices

from dates 1 to T is obtained by chaining the solutions of each date-t COP (for t = 1, ..T ),

one can think of solving the recursive equilibrium for a set of different histories
[
κT

i

]I

i=1
, each

supporting a different sequence of posterior densities f(F s | κt
i)

T
t=1. We consider only one

history κT because we take the stance that the financial innovation experiment we look at

in the data can be represented by a particular history κT , intended to match the observed

financial regimes between 1997 and 2007. The alternative would be to generate a set of I

“potential” histories
[
κT

i

]I

i=1
, which could be done using the true Markov process F a, solve

the model for each, and then take averages across these different solutions at each date t.

Appendix B Computation of Ergodic Distributions, Forecast Func-

tions, Excess Returns (NOT FOR PUBLICATION)

B.1 Ergodic Distribution and Forecast Functions under Rational Expectations

Define the date t probability distribution over bonds, productivity and collateral coefficients in the

RE model as λt(b, z, κ). The law of motion that governs the evolution of this distribution over time

is:

λt+1(b′, z′, κ′) =
∑

z

∑
κ

∑

{b:b′=g(b,z,κ)}
λt(b, z, κ)π(z′ | z)p(κ′ | κ)

where g(b, z, κ) is the policy function that sets the optimal decision rule for bonds, π(z′ | z) is the

Markov transition probability for productivity shocks, and p(κ′ | κ) is the true Markov transition

probability of κ (with the two Markov processes assumed to be independent). The unconditional

limiting distribution of bonds, productivity and collateral coefficients is given by λ(b, z, κ), and

it represents the fixed point of the above law of motion. The algorithm computes the ergodic
18This fact can be used to develop a strategy to speed up the full solution of the model, because in a computer

with n number of cores, we can solve n COPs for n different dates simultaneously.
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distribution exactly in this way, by performing iterations of the law of motion until λt(b, z, κ) and

λt+1(b′, z′, κ′) satisfy a convergence criterion.

Forecast functions are averages of the model’s endogenous variables computed at each date t

using the corresponding distribution λt(b, z, κ), starting from any initial condition (b0, z0, κ0) with

distribution λ0(b0, z0, κ0) = 1. By construction, just like iterations on the above law of motion

of probabilities converge to the long-run distribution, forecast functions converge to unconditional

long-run averages computed with the ergodic distribution, regardless of the initial conditions (as

long as the ergodic distribution itself is unique and invariant).

Given λt(b, z, κ), the date-t conditional probability distribution over κi for i = h, l is defined as

follows:

λ̃t(b, z | κi) =
λt(b, z, κi)∑

b

∑
z λt(b, z, κi)

Conditional forecast functions are averages for the models endogenous variables computed at

each date t using the corresponding distribution λ̃t(b, z | κi). By construction, as λt(b, z, κi) →
λ(b, z, κ), the date-t conditional distribution λ̃t(b, z | κi) converges to the corresponding long-run

conditional distribution λ̃(b, z | κi). Moreover, conditional forecast functions of any endogenous

variable converge to the corresponding conditional long-run average.

B.2 Forecast Functions in the Learning Model

The learning model has dynamics in the beliefs about the transition probability matrix of κ, and

hence the RE definitions of conditional and unconditional forecast functions do not apply. Intu-

itively, one can construct a set of forecast functions and ergodic distributions by using the corre-

sponding date−t beliefs to form all the expectations about future states. In light of this, we define

forecast functions in the learning model by averaging only over productivity shocks and tracking

the decision rules produced at each date by the corresponding set of beliefs and the corresponding

conditional optimization problem. Specifically, we compute forecast functions in the learning model

as follows: Take as given (b0, z0, κ0), then the relevant values of the forecast function of bonds in a
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learning period of length T with a sequence of realizations [κt]
T
t=0are:

b̂1 = E
[
b1 | (b0, z0, κ0), f(F s | κ0)

]
= h0(b0, z0, κ0; f(F s | κ0))

b̂2 = E
[
b2 | b0, f(F s | κ1)

]
=

∑

z1

∑

{b1:b2=h1(b1,z1,κ1)}
π(z1 | z0)h1

(
b1, z1, κ1; f(F s | κ1)

)

b̂3 = E
[
b3 | b0, f(F s | κ2)

]
=

∑

z2

∑

{b2:b3=h2(b2,z2,κ2)}
π(z2 | z0)h2

(
b2, z2, κ2; f(F s | κ2)

)

......

b̂T+1 = E
[
bT+1 | b0, f(F s | κT )

]
=

∑

zT

∑

{bT :bT+1=hT (bT ,zT ,κT )}
π(zT | z0)hT

(
bT , zT , κT ; f(F s | κT )

)

where π(zt | z0) = π(zt | zt−1)π(zt−1 | zt−2)...π(z1 | z0) is the probability of a particular history

of realizations of productivity up to date t (for t ≥ 0),
[
f(F s | κt)

]T

t=0
is the sequence of beliefs,

and ht

(
bt, zt, κt; f(F s | κt)

)
is the optimal decision rule for bonds determined by the date-t COP

using the date-t beliefs and evaluated for the states (bt, zt, κt). Note that because of the recursive

structure of the b̂′ts, the expectations that form these forecast functions are conditional not just on

date-0 states (i.e., (b0, z0, κ0),), but on the history of realizations [κt]
T
t=0 and the history of beliefs

[
f(F s | κt)

]T

t=0
.

The equivalent objects to compare with in the rational expectations model are:

b̃1 = E [b1 | (b0, z0, κ0)] = g(b0, z0, κ0)

b̃2 = E [b2 | b0] =
∑

z1

∑

{b1:b2=g(b1,z1,κ1)}
π(z1 | z0)g (b1, z1, κ1)

b̃3 = E [b3 | b0] =
∑

z2

∑

{b2:b3=g(b2,z2,κ2)}
π(z2 | z0)g (b2, z2, κ2)

......

b̃T+1 = E [bT+1 | b0] =
∑

zT

∑

{bT :bT+1=g(bT ,zT ,κT )}
π(zT | z0)g (bT , zT , κT )

We can also express the forecast functions of the learning model with a slight modification of

the treatment used under rational expectations. Define the probability distribution of TFP shocks

and bond holdings at date t in the learning model as χt(b, z). The law of motion for the evolution

of this probability over time, given the history κT of realizations of the leverage regimes, is defined

as follows:

χt+1(b′, z′) =
∑

b

∑
z

χt(b, z)π(z′ | z)It(b′, b, z, κt)
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where It(b′, b, z, κt) is a binary indicator such that It(b′, b, z, κt) = 1 ↔ b′ = ht

(
b, z, κt; f(F s | κt)

)

and zero otherwise.

At date-0, for example, we have χ0(b0, z0) = 1 for the particular initial conditions (b0, z0), and

χ0(b, z) = 0 for all other pairs (b, z). We also have that:

It(b′, b, z, κt) =





1 if b′ = ht

(
b, z, κt; f(F s|κt)

)
,

0 otherwise.

We could add the indicators for all other possible initial conditions, but since they satisfy χ0(b, z) =

0 they wash out from the law of motion from date 0 to 1. Hence we get χ1(h0

(
b0, z0, κ0; f(F s | κ0)

)
, z′)

=π(z′ | z0) for each z′ and zero otherwise (for all pairs (b′, z′) such that b′ 6= h0

(
b0, z0, κ0; f(F s | κ0)

)
).

Now we can compute the expected bonds chosen at date 1 for beginning of period 2 as:

b̂2 = E
[
b2 | b0, f(F s | κ1)

]
=

∑
b

∑
z χ1(b, z)h1

(
b, z, κ1; f(F s | κ1)

)
. At this point we can add

over all values of bonds in the state space because the probabilities already have incorporated the

information relevant for the “correct” bond positions that the system can land on in period 2 in

the learning model.

Alternatively, we can define the probability law of motion as:

χt+1(b′, z′) =
∑

z

∑

{b:b′=ht(b,z,κt;f(F s|κt))

χt(b, z)π(z′ | z)

In writing it this way, we take out the indicator function but keep track of only the relevant initial

states that can land in each b′ by constraining the set of b′s over which the summation is taken.

B.3 Expected Returns j Periods Ahead of Date t

Choose an initial triple (bt, zt, κt) with initial bond holdings set to bt = b̂t. t is the period for which

we are going to calculate the sequence of expected returns j periods ahead. b̂t stands for the mean

bond holdings at period t obtained from the forecast functions. zt is set equal to 1. κt is set to

its value used in the forecast function calculations for the corresponding period t. We calculate

expected returns for any date t+1+ j as of date t . This calculation involves a numerator with the

sum of dividends and price of date t+1+j, [qt(bt+j+1, zt+j+1, κt+j+1)+d(zt+j+1)], and a numerator

with the price as of date t+ j, qt(bt+j , zt+j , κt+j), all of which are projected as of the initial date t .
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We proceed in two steps. First, we calculate the probability tree of possible states in which the

economy can land conditional on the initial triple (bt, zt, κt) up to J periods ahead. The events

that we are capturing in this probability tree are the combinations of TFP and κ shocks. Second,

we construct the Es
t [R

q
t+1+j ] sequence for j = 0, 1, ..., J . Finally, as a cross check we recover the

asset price in state (bt, zt, κt) of date t, i.e., qt(bt, zt, κt), using the sequence Es
t

(
1

Es
t+j [R

q
t+1+j ]

)
to

recalculate the date-t price as the present discounted value of dividends discounted by expected

returns.

In the first step to calculate the probability tree we put all the mass on the initial state that

we are conditioning our calculations on for j = 0. In other words,

λt
t(bt, zt, κt) = 1.

Going forward these distributions evolve according to:

λt
t+j+1(bt+j+1, zt+j+1, κt+j+1) =

∑
zt+j+1

∑
κt+j+1

∑

bt+j+1∈Ht+j+1

λt
t+j(bt+j , zt+j , κt+j)π(zt+j+1 | zt+j)p

s
t (κt+j+1 | κt+j)

for j = 0, 1, ..., J where ps
t stands for the subjective transition probability matrix of κ corresponding

to period t. Ht+j+1 is the set of bolding holdings chosen conditional on a triple (bt+j , zt+j , κt+j),

which is defined as Ht+j+1 = {bt+j+1 : bt+j+1 = ht

(
bt+j , zt+j , κt+j | f(F s | κt)

)}. The superscript

t of λt
t+j+1 highlights the fact that this is the date-t + j element for the law of motion that started

with initial conditions λt
t(bt, zt, κt) as of date t, so that the probabilities are conditional on date t.

In the second step, to compute the expected returns, we first take the date t + j element of the

sequence of λ′s, λt
t+j(bt+j , zt+j , κt+j). Intuitively, this is the equilibrium probability of landing in

a particular state (bt+j , zt+j , κt+j) in period t + j, j periods ahead of the initial period. We then

compute expected returns for any t + 1 + j conditional on date t as:

Es
t [R

q
t+1+j ] =

∑
zt+j+1

∑
κt+j+1

∑

bt+j+1∈Ht+j+1

∑
zt+j

∑
κt+j

λj
t+j(bt+j , zt+j , κt+j)π(zt+j+1 | zt+j)

×ps
t (κt+j+1 | κt+j)

qt(bt+j+1, zt+j+1, κt+j+1) + d(zt+j+1)
qt(bt+j , zt+j , κt+j)

where d(z) = zg′(l). Note that Es
t [R

q
t+1+j ] is in fact Es

t [R
q
t+1+j ](bt+j , zt+j , κt+j). In other words,

the one period ahead expected returns depend on the date-j triple (bt+j , zt+j , κt+j).

To confirm that the calculations in the first two steps are correct, in the third step we recalculate

qt(bt, zt, κt) as the sum of expected present discounted value of future dividends where discounting
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is done using the equity returns (see Equation 11 in the text):

qt(bt, zt, κt) =
J∑

j=0

∑
zt+j+1

∑
κt+j+1

∑

bt+j∈Hj+1

∑
zt+j

∑
κt+j

λj
t+j(bt+j , zt+j , κt+j)π(zt+j+1 | zt+j)

×ps
t (κt+j+1 | κt+j)

(
j∏

i=0

(
1

Es
t [R

q
t+1+i]

))
d(zt+j+1).

To discount date-t+j+1 dividend, we divide it by the sum of all one-period-ahead expected returns

up to that date. The calculation of expectations in this step utilizes the probability tree computed

in the first step.
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