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ABSTRACT

Forecast Combination and Model Averaging Using Predictive
Measures*

We extend the standard approach to Bayesian forecast combination by
forming the weights for the model averaged forecast from the predictive
likelihood rather than the standard marginal likelihood. The use of predictive
measures of fit offers greater protection against in-sample overfitting and
improves forecast performance. For the predictive likelihood we show
analytically that the forecast weights have good large and small sample
properties. This is confirmed in a simulation study and an application to
forecasts of the Swedish inflation rate where forecast combination using the
predictive likelihood outperforms standard Bayesian model averaging using
the marginal likelihood.
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1 Introduction

Following Bates and Granger (1969) forecast combination has proven to be a highly suc-
cessful forecasting strategy. Examples of formal evaluations of forecast methods, where
forecast combination has performed well, include the M-competitions (Makridakis, Ander-
sen, Carbone, Fildes, Hibon, Lewandowski, Newton, Parzen, and Winkler (1982), Makri-
dakis, Chatfield, Hibon, Lawrence, Mills, Ord, and Simmons (1993) and Makridakis and
Hibon (2000)), and with a focus on macroeconomic forecasting, Stock and Watson (1999).
Much of this success can be attributed to the robustness of forecast combination. By com-
bining forecasts from several models we implicitly acknowledge that more than one model
could provide good forecasts and we guard against misspecification by not putting all the
weight on one single model. While the literature on forecast combination is extensive,
see Clemen (1989) for a somewhat dated review, and Hendry and Clements (2004), and
Elliott and Timmermann (2004) for recent theoretical contributions, relatively little at-
tention has been given to the use of predictive measures of fit as the base for forecast
combination. In this paper we propose the predictive likelihood as the basis for Bayesian
model averaging (BMA) and forecast combination.

We adopt a Bayesian approach since BMA is an ideal framework for forecast combi-
nation. It provides a rigorous statistical foundation where the weights assigned to the
different forecasts arise naturally as posterior probabilities of the models and the com-
bined forecast has appealing optimality properties given the set of models considered
(Min and Zellner (1993), Madigan and Raftery (1994)). In addition BMA accounts for
the model uncertainty and it is easy to construct prediction intervals taking account of
model uncertainty as well as parameter uncertainty.

The specific forecasting situation we consider is similar to the one studied by Stock
and Watson (2002), i.e. where there is a wealth of potential predictor variables. For
computational simplicity we use simple linear regression models, but in contrast to Stock
and Watson we consider the models that arise when taking all possible combinations of the
predictor variables. An efficient summary of the forecast content of the predictors is then
provided by the model averaged forecast from these models. In previous work Jacobson
and Karlsson (2004) find this approach to work well when the forecast combinations are
based on the marginal likelihood, and Eklund and Karlsson (2005) compare the method
of Jacobson and Karlsson with the approach of Stock and Watson based on using the first
few principal components of the predictor variables. In related work Koop and Potter
(2004) use BMA for forecasting in large macroeconomic panels using models based on
principal components. They conclude that the gain in forecasting performance from the
use of principal components is small relative to the gains from BMA.

While the previous studies all apply BMA in a standard fashion using the marginal
likelihood, we propose the use of predictive measures of ﬁtF_-] and, in particular, the pre-
dictive likelihood as a natural basis for forecast combination. In addition to the intuitive
appeal, the use of the predictive likelihood relaxes the requirement to specify proper pri-
ors for the parameters of each model. In this sense, our work is closely related to the
literature on minimally informative priors.

The use of predictive measures leads to some additional practical concerns compared
to model averaging based on in-sample measures of fit. In order to calculate the weights
for the combined forecast a hold-out sample of [ observations is needed for the predictive

!See Laud and Ibrahim (1995) for a discussion of different predictive measures in a Bayesian context.



likelihood. The number of observations available for estimation is thus reduced from
T to T — | and there is clearly a trade off involved in the choice of . The predictive
measure becomes less erratic as [ increases, which should improve the performance of the
procedure. Estimation, on the other hand, is performed without taking the most recent
observations into account, which might have a detrimental effect’]

In general, the weights assigned to the forecasts should have some of the properties of
consistent model selection procedures, i.e. if there is a correct model this should receive
more weight as the sample evidence accumulates and ultimately all the weight. On the
other hand we want the weights to retain the robustness property of forecast combination
in finite samples and guard against the overconfidence in a single model that can arise
from overfitting the data. We show that the use of the predictive likelihood leads to
consistent model selection. In addition we give an intuitively appealing interpretation of
the predictive likelihood indicating that it will have good small sample properties. The
latter claim is supported by a simulation study and our empirical application.

The remainder of the paper is organized as follows. The next section introduces the
Bayesian model averaging technique and predictive densities, section [3| presents several
Bayes factors and their asymptotics. Section [4] studies the small sample properties of the
predictive likelihood. Section [5] contains a simulation study, section [6] an application to
forecasts of the Swedish inflation and section [ concludes.

2 Forecast combination using Bayesian model
averaging

The standard approach to forecast combination using BMA operates as follows. Let
M = {Mj,..., My} be the set of forecasting models under consideration, with a prior
probability for each model, p (M;), prior distribution of the parameters in each model,
p(0;] M;) , and likelihood function L (y| #;, M;). The posterior probabilities of the models
after observing the data y follow from Bayes rule

m (y| M;) p(M;)

Mi = M )
PMIY) = S Mo (M)

(1)

where

m (y| M;) :/L(Y‘eh-/\/li)p(ei’/\/li)dei (2)

is the marginal likelihood for model M;. All knowledge about some quantity of interest,
¢, when taking account of model uncertainty, is summarized in its posterior p (¢|y) which

is given by
M

p(ly) =D p(ly, M;)p(M;ly). (3)

Jj=1

This is simply an average of the posterior distribution under each of the models, weighted
by posterior model probabilities. Alternatively, if g (¢) is a function of ¢, then by the

2This is an issue only for the calculation of the weights. The forecast from each model used in the
forecast combination is based on the full sample.



rules of conditional expectation

M

Elg()lyl=>_ Elg(@)ly, M;lp(Myly). (4)

J=1

In particular, the minimum mean squared error forecast is given by

M
Jr4n = E (yraly) :ZE(Z/TM’%MJ‘)I)(MJ‘W% (5)

j=1

where E (yr4]y,M;) is the forecast conditional on model M. The optimal forecast is,
in other words, given by a forecast combination using the posterior model probabilities
as weights.

It is clear from that the conversion of prior model probabilities into posterior prob-
abilities is determined by the marginal likelihood. While this leads to optimal forecasts,
conditional on the true model being included in the set of models, it raises the possi-
bility that the forecast combination is adversely affected by in-sample overfitting of the
data. The problem of in-sample overfitting of the data might seem counter-intuitive as the
marginal likelihood is commonly interpreted as an out-of-sample or predictive measure
of fit. The interpretation as a predictive measure relies on the prior having a predictive
content, i.e. that the prior is informative. In our application and in large scale model se-
lection or model averaging exercises in general it is not possible to provide well thought out
priors for all models. Instead default, uninformative, priors such as the prior suggested by
Fernandez, Ley, and Steel (2001) are used and the marginal likelihood essentially reduces
to an in-sample measure of fit. In our case, with an uninformative g-type prior similar to
the prior of Fernandez, Ley, and Steel (2001), the marginal likelihood is a function of the
residual sum of squares from a least squares fit and can be viewed as a pure in-sample
measure of fit.

A natural remedy for the problem of in-sample overfitting is to explicitly consider
the out-of-sample, or predictive, performance of the models. Split the sample y =
(y1,%2,...,yr) into two parts with m and [ observations, with T = m + [. That is,
let .

— Ymx1
yea=| ], ©)
where the first part of the data is used to convert the parameter priors p (6;| M;) into
the posterior distributions, and the second part of the sample is used for evaluating the
model performance.

In particular, the posterior predictive density of ¥ = (Ypmi1, Yma2,---»yr) , conditional

on y* = (y1,%2, .., Ym) and model M;, is

p(¥ly" M) :/ L(y[0:y", M) p(6i|y", M;) db;, (7)
0;

where p (0;|y*, M,) is the posterior distribution of the parameters and L (y|6;,y*, M) is

the likelihood. The density of the data is averaged with respect to the posterior knowledge

of the parameters. The predictive density gives the distribution of future observations,

Ym+1s Ym+2s - - - » Y7, conditional on the observed sample y*. After observing y, the ex-

pression ([7)) is a real number, the predictive likelihood. It indicates how well model M,
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accounted for the realizations y,,11, Yma2, - - -, yr- A good model will have a large value of
By replacing the marginal likelihood in with the posterior predictive density (7)),
the posterior model probabilities, or weights, can be expressed as

p(¥ly* M) p (M) .
S (Fly M) p (M)

The forecast combination based on predictive likelihood weights is then obtained by sub-
stituting p (M;|¥,y") in () . Note that the forecast from a single model is still based on
the full sample posterior distribution of the parameters.

The partitioning of the data in a training sample y* and a hold-out sample y in @ is
natural for time series data. This is obviously not the only way to partition the data and
other approaches may be more appropriate at times, Gelfand and Dey (1994) provide a
typology of the various forms the predictive likelihood can take:

p(Mi|y,y") = (8)

1. ¥y =y, y* = &, which yields the marginal density, m (y), of the data.

22y =y}, ¥y =y = (W1,¥2,- s Yr—1,Yr+1,---,Yyr), which yields the cross-
validation density p (y,|y_, M;), as in Stone (1974) or Geisser (1975).

3. y contains usually two or three observations, y* =y — y, extending the point 2, as
in Pena and Tiao (1992).

4. y =y, y" =y, which yields the posterior predictive density defined in Aitkin (1991).

5. y=y—-y',y = (yl, Yoy v ,y[pﬂ) , where [ ] denotes the greatest integer function;
here a proportion p of the observation is set aside for prior updating with the
remainder used for model determination, as suggested by O'Hagan (1991).

IS
" <

=y —y* y* is a minimal subset, i.e. the least number of data points such that
(0;|y*, M;) is a proper density, suggested by Berger and Pericchi (1996).

The main motivation for these alternatives is that they can be used with improper pri-
ors on the parameters. An adequate choice of y* removes the impropriety of p (0, y*, M;)
and therefore the posterior predictive density p (y]|y*, M;) does not diverge and can be
calculated.

We adopt a combination of the approaches suggested in O’Hagan (1995) and in Berger
and Pericchi (1996) using the sample split in (@ The first part of the data, the training
sample y*, is used to obtain posterior distributions p (80;|y*, M;). The updated prior
distributions are then used for assessing the fit of the model to the data y.

As the hold-out sample size, [, increases, that is the size of the training sample m
decreases, the predictive measure will be more stable and should perform better up to
a point where the predictive distribution becomes diffuse for all models and is unable
to discriminate. Berger and Pericchi (1996) favor minimal training samples in order to
devote as much data as possible to the model comparison.



3 Model choice and large sample properties

Ideally, the weights assigned to the forecasts should act as consistent model selection
criteria. The weight, or posterior probability, of the true model should approach unity
as the sample size increases. As any non-dogmatic prior over the models is irrelevant
asymptotically, it suffices to study the Bayes factor of model M, against model M;

L P (Mily) P (M;) N m (y| M;)
Bl = P<Mj|y>/P<Mj> = m(y| M)

(9)

Correspondingly, the predictive odds ratio in favor of model M; versus model M for the
future observations m + 1 through 7 is

P (M)

PBF;; (y|y* 1
where 51y M)
~ * pLyly ., %
PBFE;; = 11
1 (317) p(¥ly*M;) =

O’Hagan (1995) defines as the partial Bayes factor (PBF) and points out that the
PBF is less sensitive to the choice of the prior distribution than the Bayes factor @ and
that the PBF does not depend on arbitrary constants when improper priors are used.

3.1 Asymptotic Bayes factors

Using a Laplace approximation we can write the Bayes factor as

1
2

() ~ (o) () ’—H ®) 2 (%) (12)

L (Y\ éwMj) p (@') ‘—H (éj> Bl

for large T'. In expression ((12)), 0, is the maximum likelihood estimator under model M;,

and H (91> = (—W) ‘ _ is the observed Hessian matrix and k; is the number
i00; 0=0;

of parameters in model M;. The asymptotic Bayes factor can be rewritten as

L(Y|éi7Mi)

—2log BFy; (y) = —2log L(yl6;M;)

+ (ki — kj)log T + A (éi,éj), (13)

where the last term

4(6:.8;) = 1o 2log —-t (K —k)log2r  (14)

-1

L(y|6iM;)

is O (1). For non-nested models, logm is O, (T') when M; or M; is the true

model, and it follows that the Bayes factor is consistent. For nested models standard
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results for Likelihood ratio tests apply and consistency follows. See Gelfand and Dey
(1994) for additional details. Note that dropping the term A (-) in ((13)) yields Schwarz’s
Bayesian information criterion

(i)
—2log BF;; (y) =~ —2log - + (ki — kj)logT. (15)
L (y’ eja MJ)

The previous results relies on the assumption that the true model is included in the
model set under consideration. In a recent paper Fernandez-Villaverde and Rubio-Ramirez
(2004) extended this to the case when all the models are misspecified and showed that,
asymptotically, the Bayes factor will select the model which minimizes the Kullback-
Leibler distance to the true data density. That is, the best approximation to the true
model is selected.

3.2 Asymptotic partial Bayes factors
The partial Bayes factor can be expressed as

i M) M)
PBF, (5]y") = ;'M /m §|’M (16)

where m (+) is the marginal likelihood of the full sample, y, and the training sample, y*,
respectively. This gives the approximate partial Bayes factor in the following form

L <Y| éi,ya Mz) p <éi,y> ’_H <éi,)’> -
L <y| 0y, Mj) p <9j,y> ‘—H (éj,y) h
—1
L(y* 0y, M; 0,y ‘—H 0:y-
<y Ay >p<Ay> (AY>11/2<%> 2 a7
L <Y*| 9j,y*7Mj) p <9j,y*> ‘—H (0”*)

where 9zy is the maximum likelihood estimate of 8, for the training sample and 91-73, for
the full sample.
We can thus write the partial Bayes factor as

1/2
T 2
1/2 (%)

1/2 -1

PBE; (y|y*) =

~ * |91y |éi,y*’Mi
+ (ki — k) (logT —logm) + A (éi,(_), 0i)) (18)
with
N “H(0iy) " “H(Biyr)
A (91()791 (-)) = —log {H(éjy)l‘ + log JH(éj;)l‘
p(éi,y) p(éi,y*)
— 2log e + 2log (o) O(1). (19)



It follows that model choice based on the predictive likelihood is consistent provided that
[/m — oo. That is, when the hold-out sample grows faster than the training sample or
the training sample is fixed.

We conjecture that the results of Ferndndez-Villaverde and Rubio-Ramirez (2004)
applies to the partial Bayes factor as well, possibly with a rate condition on the limiting
behavior of [/m. Consequently the partial Bayes factor will select the best approximation
to the true model out of a set of misspecified models.

4 Small sample properties

Turning to the small sample properties we concentrate the analysis on the linear regression
models we use in the forecasting exercises. Consider a linear regression model with an
intercept o and k regressors

y=Zvy+e¢, (20)

where v = (o, 3), Z = (1,X) and ¢ is a vector of N (0, 0'21) disturbances. Partitioning
Z conformably with @ into the training and hold-out samples we use a g-prior for the
regression parameters

No% ~ N (O,ca2 (z*'z*)—l) , (21)

that is, the prior mean is set to zero indicating shrinkage of the posterior towards zero
and the prior variance is proportional to the information in the training sample. For the
variance the usual uninformative prior is used

p(0?) < 1/0> (22)
This gives the predictive density for y

p(512) (7% L+ Z M) 2]
~ , _ L~ 1 _ —(m+1)/2
x [5* +(5-Zv) (L+Z ) Z) (Sf—Z'yl)} (23)
See Appendix [A] for further details.
A slight reformulation of the predictive density is quite revealing,
S* *1/2 ‘M*ﬁ
y — _ 24
b (2) (21)

‘M* + 77|’

—(m+1)/2

<t s (7 2) (142007 2) (5 2|

and shows that the predictive likelihood can be decomposed into three components.

1. The in-sample fit over the training sample is measured by (%)_l/ 2, Comparing the

in-sample fit of two models by this criterion, (S;" / Sj’f‘)fl/ ? , it is clear that the effect
of differences in fit is increasing in [, the size of the hold-out sample.



~ 1/2
2. A penalty for the size of the model is provided by |M*\1/2/ ‘M* +7Z'Z| . Wehave

M* = 177" and Z'Z ~ LZ*'Z* which gives

1 1\ 1
M| = | Sz — (H ) Z 7| (25)
c c
and
k+1
-~ 1 l l+c(l1+4L

For large values of ¢ we can then approximate the ratio of determinants by

2 1\ ' N
M- + Z'Z, +e(l+5) m m

This penalty for size is relatively modest and increasing in [.

3. The out-of-sample forecasting accuracy is measured by

—(m+1)/2

ot g G- n) (200 2) G-zm)| e

It is especially noteworthy that the forecast error is relative to the forecast error
variance implied by the model. In this sense the predictive likelihood is quite dif-
ferent from, say, ranking the models according to the Root Mean Square Forecast
Error (RMSFE).

Figure (1] illustrates the overall behavior for a model with good in-sample fit and cor-
responding small forecast error variance and a model with poor in-sample fit and large
forecast error variance. If the forecast error is modest, as can be expected from a model
with small forecast variance, the model with smaller forecast error variance is preferred.
If, on the other hand, the forecast error is larger than can be expected from the model with
good in-sample fit this indicates that the model is overfitting the data and the model with
relatively poor fit but a realistic prediction interval is preferred. The apparent in-sample
overfitting and poor out-of-sample forecast may also be due to breaks in the parameters of
the model. The predictive likelihood will thus penalize models with unstable parameters
and give preference to models that are stable over time. This penalty is obvious when
a break is close to the split between training and hold-out samples but the penalty may
also be substantial when the break occurs in the hold-out or training samples. This issue
will be investigated in more detail in the Monte Carlo experiments.

The contribution of all three components of the predictive likelihood increase with
[, the size of the hold-out sample, given a fixed total sample size T" = m + [. They
do, however, increase with different rates and it is not clear what the appropriate finite
sample trade off between m and [ is. Asymptotic arguments indicate that [ should be
large relative to m and then the contribution of the in-sample fit is relatively large.



Figure 1 Predictive likelihood for models with small and large prediction error variance.
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5 Monte Carlo study

We use a Monte Carlo study to investigate some aspects of the small sample performance
of forecast combinations based on the predictive likelihood as well as the traditional in-
sample marginal likelihood. In particular we aim to shed some light on two issues. The
appropriate choice of m and [ for common sample sizes and how the procedures cope with
the likely case that the true model is not included in the set of considered models. The
second issue is investigated in two ways. First by assuming that some of the variables in
the true model are unavailable to the investigator and secondly by introducing a shift in
the parameters of the true model while only considering constant parameter models.
The design of the experiment is based on Ferndndez, Ley, and Steel (2001). We
generate a matrix of 15 predictors X715y, where the first 10 random variables, x1, .. ., X0,
are iid standard normal and then construct the additional five variables according to

(Xi1, .+ X15) = (X1,...,%5) (0.3 05 0.7 09 1.1)¢+E, (29)

where ¢ is a 1 X 5 vector of ones and E is a T x 5 matrix of iid standard normals. This
produces a correlation between the first five and the last five predictors. The dependent
variable is generated as

Yy = 4 + Q-Il,t — T + 1.5.T77t + T11,¢ + 0.51’137t + O&y¢, (30)

where the disturbances ¢; are iid standard normal and o = 2.5. We consider three sample
sizes, T = 100, 230 and 380, corresponding to roughly 25 years of quarterly data, 20
years of monthly data and 30 years of monthly data. In the remainder we will refer to

10



these as the small, medium and large data sets. In each case we generate additional 20
observations that are set aside for the forecast evaluation.

The forecasts used in the evaluation are true out-of-sample forecasts where the data
set is sequentially updated. That is, the first forecast for ¢ = 101 is based on the first
100 observations which are split into training and hold-out samples. The training sample
is used to convert the prior into a posterior, the predictive likelihood is calculated for
the hold-out sample and posterior model probabilities are calculated as in or in
for the marginal likelihood based on the full sample. The model averaged forecasts are
then formed using where the forecast from each model is based on the posterior from
the full sample of 100 observations. For the next forecast for ¢ = 102, observation 101
is added to the data and the procedure is repeated. Note that the size of the hold-out
sample is held constant for the 20 forecasted observations. This means that the training
sample size increases as t increases.

The first set of simulation experiments are executed with all predictors available for
variable selection. This corresponds to the M —closed view of Bernardo and Smith (1994),
when the true model is assumed to be part of the model set.

For the medium and the large data sets we conduct additional experiments where two
of the variables, x; and z7, in the true model are excluded from the set of potential
predictors. The true model is not in the model set and we can only hope to find a good
approximationﬂ This corresponds to the 91—open view of Bernardo and Smith.

Finally we conduct one experiment for the medium sample size, T = 230, where all
the variables are retained. Instead the coefficient of x7 changes from 1.5 to —1.5 at the
beginning (¢t = 60), middle (¢ = 125) or end of the data (t = 190). This again corresponds
to the MM —open view but with the added complication that no constant parameter model
will provide a good approximation both before and after the break.

For each sample size we generate 100 independent samples of the explanatory variables
X and the dependent variable y in order to avoid sample dependent results. For each data
set 20 forecasts are calculated using the individual models and the forecast combinations.
The estimated Root Mean Square Forecast Error (RMSFE) of the different procedures is
the average of the RMSFE from the 100 data sets.

The prior specification is the same for all experiments and similar to the one used by
Eklund and Karlsson (2005). The prior on the models is given by

p (M) o 65 (1= 6)F F (31)

where k; is the number of variables included in model M;, the maximum number of
variables is k' = 15 (or 13 when z; and z; are dropped) and we set 6 = 0.2 corresponding
to a prior expected model size of 3. The constant ¢ in is set to (K)°.

For a large number of possible predictor variables it is too time consuming to actually
calculate the predictive or marginal likelihood for every model. Instead we use a Markov
Chain to explore the model space. The chain is based on the reversible jump Markov
chain Monte Carlo (RJMCMC) of Green (1995) and is designed to have the posterior
model probabilities as its stationary distribution. The details of the algorithm are given
in Appendix Bl While the chain will provide a simulation consistent estimate of the
posterior probabilities we use it primarily as a device for identifying the set of practically

3The best approximation, given a squared error loss, is of course the expectation of y conditional on
the remaining variables.
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Figure 2 Ratio of RMSFE for predictive likelihood and marginal likelihood as a function
of [ for the simulated small data set.
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relevant models. That is, models with sufficiently large posterior probability to enter into
the forecast combination in a meaningful way. To this end we take the set of relevant
models to be the set of models visited by the chain and exact posterior model probabilities
are calculated conditional on this set of models. A practically relevant issue in this context
is that we run the chain long enough to account for most of the total posterior probability
mass. We use the algorithm of George and McCulloch (1997) to estimate the probability
coverage of the chain. In the simulation experiments we run the chain for 70 000 replicates
and discard the first 20 000 draws as burn-in.

5.1 Results for 91—closed view and 9)i—open view with constant
parameters

For the simulated small data set the simulations include different sizes of the hold-out
sample, from [ = 2, to [ = 83 with increments of 3. For the medium data set the hold-out
sample size varies from [ = 2, to [ = 212 with an increment of 5. In the large data set the
hold-out sample size starts at [ = 2 and ends at [ = 362, with step 10.

The impact of [ on the forecast accuracy for the 9M-closed view is presented in Tables
-[C.3} and for the M-open view in Tables and in Appendix [C|] Figures [2] -
plot the ratio of the RMSFE for the predictive likelihood to the RMSFE for the marginal
likelihood for the three sample sizes. All the results show that the predictive likelihood
RMSFE decreases as the size of the hold-out sample increases. For the small data set
the predictive likelihood provides a small but insignificant improvement on the marginal
likelihood for [ > 74, indicating that at least 70% of the data should be left for model
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Figure 3 Ratio of RMSFE for predictive likelihood and marginal likelihood as a function
of [ for the simulated medium data set.
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comparison.

In the case of the medium data set the predictive likelihood outperforms the marginal
likelihood for I > 97 (the RMSFE is significantly smaller for | > 162), with some indication
of a minimum around [ = 177 for the 9M-closed view. About 70% of the data for the hold-
out sample seems to be appropriate in this case as well. For the large data set the
differences between the RMSFE of the marginal likelihood and predictive likelihood are
moderate, but still indicating that 75% of the data is needed for the hold-out sample.
The gains from using the predictive likelihood are modest in the 9i-closed case since the
forecast combination based on the marginal likelihood is close to the best possible forecast
in each case. The RMSFE is 2.5 when the true model with known parameters is used for
forecasting. There is thus little room for improvement when the RMSFEs for the marginal
likelihood are 2.641, 2.527 and 2.531 in the three experiments in the 9-closed view.

The results for the large data in set also confirm the consistency results for the marginal
and predictive likelihoods. The marginal likelihood assigns the highest posterior probabil-
ity to the true model, on average the probability is 79.08% over the replicates. Similarly
for the predictive likelihood, for [ = 362, the average probability of selecting the true
model is 50.24%. With this large data set, the forecast combinations are dominated by
the forecast from the true model. In addition there is little posterior parameter uncer-
tainty. As a result, both forecast combinations are close to the best possible forecast and
there is a little to choose between them.

For the 9M-open view, when z; and z; are dropped from the data, the predictive
likelihood outperforms the marginal likelihood by a greater margin and over a larger range
of hold-out sample sizes. The predictive likelihood improves on the marginal likelihood
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Figure 4 Ratio of RMSFE for predictive likelihood and marginal likelihood as a function
of [ for the simulated large data set.
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for [ > 52 (the reduction in RMSFE is significant for [ = 107 and [ > 117) with the
medium data set and | > 172 (significantly for [ > 182) with the large data set, with
minima around [ = 182 and [ = 302, respectively. Again, using 70% of the data for the
hold-out sample seems about right.

The better performance of predictive likelihood in the 9t—open view can be explained
by the variable inclusion probabilities plotted in Figures[fland[6] The posterior probability
of a variable ¢ being in the model is given by

p($i|¥)ZZI(%GMJ')I?(MH)’% (32)

where I (z; € M) equals one if z; is included in model j and zero otherwise.
In the case when there is no true model in the model set the predictive likelihood by
and large finds the approximation given by the conditional expectation,

gl w17 = —1.034x9, — 1.44815, — 1.86224, — 3.27625, + 1.414x1,, (33)
+ 0.4141‘12715 + 0.914[)3137t + 0.4141‘14,13 + 0.414]315,15.

In contrast, the marginal likelihood in general only selects from the variables originally
in the model. Note that the standard deviation of the prediction error from the conditional
model is 3.355 compared to 2.5 for the true model.

In the experiments the set of models visited by the primary chain accounted for 95% —
98% of the posterior mass for the different forecast observations. The Markov chain
visits many more models when using the predictive likelihood, indicating that the model
probabilities are much less concentrated than with the marginal likelihood.
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Figure 5 Variable

inclusion probabilities (average) for medium data set.
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Figure 6 Variable inclusion probabilities (average) for large data set, where the last point

on the horizontal axes denotes the marginal likelihood.
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5.2 Results for 91—open view with shifting parameters

In these experiments, executed only for the medium data set, we let the size of the
hold-out sample vary from [ = 2 to [ = 212 with increments of 10. The RMSFEs are
reported in Tables - and the ratio of the RMSFE for the predictive likelihood to
the marginal likelihood RMSFE is graphically represented in Figure . The variable
inclusion probabilities for the shifting variable x; are plotted in Figure .

The behavior of the variable inclusion probability of x7 depends on whether the break
is in the training sample or in the hold-out sample, and on its position in the sample. In
general, when the break is close to the split between the training and hold-out samples,
the variable inclusion probabilities for x; are at their minimum. When the shift is in
the training sample and at the beginning of the data (¢ = 60, [ < 182) the posterior for
the parameters is not heavily influenced by the presence of the break and the hold-out
sample fit of the model agrees with the results from the training sample. (Both training
and hold-out sample indicate a negative value for the parameter associated with z7.)
When the break is at the end of the training sample (t = 190, | < 52) the posterior for
the parameters is again relatively unaffected by the break but the out-of-sample forecasts
performance over the hold-out sample is poor as a result of the sign change. Finally, when
the break is in the middle of the sample, none of the models performs well with a high
model uncertainty as consequence.

When the shift is located in the hold-out sample all models, and in particular models
containing x7, will have problems with prediction after the break. However, as the size
of the hold-out sample increases the problem diminishes since the number of pre-break
observations grows and it is natural that the inclusion probability for z7 increases.

The actual forecasts are calculated using posterior distributions for the parameters
that are based on the full sample up to the date of the forecast. That is, the forecasts
from a given model are the same for the marginal and predictive likelihoods and the
difference in forecasting performance is due to the different weights assigned to the models.
Roughly speaking the forecasting problem can be divided into a relatively easy case when
the break occurs at the beginning of the data and a more challenging problem when the
break occurs at the end of the data. In the first case the performance of the marginal
and predictive likelihoods are similar and close to what we observe for the no-break case
(with a break at ¢ = 60 the best RMSFE for the predictive likelihood is 2.73 compared
to 2.51 for the no-break, M—closed case). In the second, more challenging case, with a
break at ¢t = 190 the smallest RMSFE for the predictive likelihood is 3.21 but this is still
a substantial improvement on the 3.69 RMSFE for the marginal likelihood. The pattern
of the relative performance depends on the location of the break. For the base, no-break,
M —closed case the predictive likelihood improves significantly on the marginal likelihood
for [ > 162. In contrast, when the break occurs at t = 60 we have a significantly smaller
RMSFE for 72 <[ < 142 and significantly larger RMSFE for [ > 172. In the intermediate
case with a break at ¢ = 125 the predictive likelihood gives a smaller RMSFE for [ > 152.
Finally, for the break at ¢ = 190 the predictive likelihood improves significantly on the
marginal likelihood except for the smallest, [ = 2, hold-out sample. Overall, the largest
improvements occur for relatively small hold-out samples, about 40% of the data. This
runs counter to the no-break case when the largest improvement occurred with roughly
70% of the data left for the hold-out sample.
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Figure 7 Results for the medium data set with a shifting parameter.
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6 Forecasting the Swedish inflation rate

Our primary goal is forecasting and evaluating forecast performance and we do not at-
tempt to develop models for the inflation rate with causal interpretations. We concentrate
on simple regression model of the form

Yeh = 0+ wWdipp, + X0 + €4, (34)

with the aim to forecast h time periods ahead. The constant term « and a dummy variable,
d;, capturing the low inflation regime assumed to start in 1992Q1, are always included in
the model, whereas the members of x; are selected from the set of potential predictors.
While this might seem an overly simplistic and static model formulation at first, there is
nothing preventing us from including lags of variables in x;. The model can thus allow
for quite complicated dynamics in the inflation rate. Another feature of the model class
is the use of the h period lead, y;11, instead of y; as the dependent variable. This choice
of dependent variable has the great advantage that it abolishes the need of forecasting
the predictors in x; when forecasting y;,,. The obvious alternative is an autoregressive
distributed lag specification or a VAR model. See Chevillon and Hendry (2005) for an
in-depth discussion of the relative merits of direct forecasts models like and the more
traditional dynamic model with forecasts based on the chain rule of forecasting.

In essence we view as the reduced form of a joint model for y; and x;. The obvious
disadvantage of this choice of dependent variable is that it leads to a different model for
each forecast horizon.

The simplicity of the model class allows us to consider a wide range of explanatory
variables and possible forecasting models. For the application at hand we have quarterly
data for the period 1983Q1 to 2003Q4 on the 77 predictor variables listed in Appendix
D] This set of variables includes a wide range of indicators of real and monetary aspects
of the Swedish economy and is close to an exhaustive set of potential predictors for the
inflation rate. Note that we include (the current level of) inflation in the set of predictor
variables for inflation A periods ahead. Inflation is measured as the 4 quarter percentage
change in the consumer price index and the remaining variables are with few exceptions
4 quarter growth rates or 4 quarter log differences.

We evaluate the performance of the predictive likelihood by producing 4 quarters
ahead forecasts for the period 1999Q1 to 2003Q4.

We use the model prior (31)) with the maximum number of variables set to &' = 15
and 0 = 0.1, corresponding to a prior expected model size of 7.7. For the regression
parameters of each model we use the g-type prior with ¢ = (K )3combined with a
Jeffreys prior on the error variance. For each of the point forecasts, we run a preliminary
variable selection RJIMCMC run with all predictors included in the data set. After this
run we add 1 lag to the 20 predictors with the highest posterior probabilities of being
included in the model and run a final RJIMCMC run which selects models from the new
set of 40 variables, keeping the same prior hyper parameters. The prior expected model
size in the second run is then 4. See Jacobson and Karlsson (2004) for further details on
the variable selection procedure. The chain is run for 5 000 000 replicates in each run.

4The inclusion of the dummy variable creates a technical difficulty in that this leads to a singular Z*'Z*
matrix for the training sample with improper priors and posteriors as result. We solve this by demeaning
both the explanatory and dependent variables separately for the periods before and after 1992Q1. This
removes « and w from the model which is then estimated without an intercept. This corresponds to using
an improper uniform prior on « and w.
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Table 1 RMSFE of the Swedish inflation 4 quarters ahead forecast, for | = 44.

Predictive Marginal
likelthood likelthood

Forecast 0.9429 1.5177
combination

Top 1 1.0323 1.5376
Top 2 0.9036 1.7574
Top 3 0.9523 1.6438
Top 4 1.0336 1.4828
Top 5 0.9870 2.0382
Top 6 0.9661 1.6441
Top 7 1.0534 1.5755
Top 8 1.1758 1.2905
Top 9 1.0983 1.8356
Top 10 1.0999 1.7202
Random 1.0251 1.0251
walk

6.1 Results

As the data set is rather short, starting in 1983Q1, we are restricted in our choice of
hold-out sample. The maximum size of [ is given by T'— k' — h — 1, since all the model
parameters need to be identified. For the first set of forecast in 1999Q1 we only have 64
observations available and with &’ = 15 the largest possible hold-out sample size is [ = 44.
This is a little bit short of the 70% found in the simulation study but might offer good
protection against structural breaks at the end of the data. The results for the predictive
likelihood (with [ = 44) and the marginal likelihood are presented in Table [} The table
also includes forecasts from the 10 models with the highest posterior probabilities and the
forecast assuming the process is a random walk, i.e. the forecast for y;,; is y;. The top
panel of Figure |8 plots the actual values of the inflation, including the forecasts based on
the predictive likelihood and the marginal likelihood. In the lower panel the errors from
both methods are depicted.

For the inflation forecasts the gains from using the predictive likelihood is quite sub-
stantial. For the forecast combination the RMSFE is reduced by 37% compared to the
marginal likelihood. In addition all ten models with the largest weight in the combination
outperform the top 10 models for the marginal likelihood. The gain from forecast com-
bination is clear with the predictive likelihood where the combined forecast does better
than selecting a single model by the predictive likelihood criterion.

For this data set the Markov chain accounted for about 88% — 96% of the posterior
mass when the predictive likelihood is used and about 96% — 99% for the marginal like-
lihood. The Markov chain visits approximately 4.5 times more models, when using the
predictive likelihood, than when using the marginal likelihood, suggesting that the predic-
tive likelihood does not discriminate between models to the same extent as the marginal
likelihood does. This is confirmed by Table [2] which gives the average of the variable
inclusion probabilities over the 20 forecasts. The marginal likelihood clearly favors three
variables, the population share in two age groups and housing prices, including them in
essentially all models. The inclusion probabilities are much more dispersed for the predic-

20



Figure 8 Swedish inflation rate 4 quarters ahead forecasts and forecast errors, [ = 44.
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tive likelihood with current inflation having probability 1/2 of being included. One factor
contributing to this difference is that the marginal likelihood consistently picks the same
three variables for all the forecasts whereas the predictive likelihood favors different sets
of variables for different time periods.

As an example consider Table [3| which reports the models with the highest posterior
probabilities for the 1999Q1 forecast. While not always the case, the predictive likelihood
favors smaller models for this forecast. Note that the marginal likelihood clearly favors
one model with a posterior probability of 0.13, thrice that of the second best model,
while the predictive likelihood indicates much more model uncertainty with a posterior
probability of 0.05 for the best model. Effectively, the predictive likelihood will thus
include more models in the forecast combination and provide greater robustness against
in-sample overfitting.

The variables selected by the marginal and predictive likelihoods can in general be
expected to have predictive content for inflation. One possible exception is the population
variables which might be more difficult to motivate. We note that these are ranked much
lower by the predictive likelihood. It is also interesting to note that variables related to
current inflation and real activity are ranked higher by the predictive likelihood.

7 Conclusions

This paper proposes the use of the out-of-sample predictive likelihood in Bayesian forecast
combination. We show that the forecast weights based on the predictive likelihood have
desirable asymptotic properties, i.e. they will consistently select the correct model. Our
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Table 2 Variables with highest posterior inclusion probabilities (average).

Predictive likelihood Marginal likelithood
Variable  Post. prob. Variable Post. prob.

1. Infla 0.5528 Pp1664 0.9994
2. InfRel 0.4493 Pp1529 0.9896
3. U314w 0.3271 InfHWg 0.9456
4. REPO 0.2871 AFGX 0.8104
5. IndProd 0.2459 PpTot 0.4996
6. ExpInf 0.2392 PrvEmp 0.4804
7. RBY 0.1947 InfCns 0.4513
8. InfFl 0.1749 InfPrd 0.4105
9. MO 0.1533 R3M 0.4048
10. InfUnd 0.1473 Pp75+ 0.3927
11. LabFrc 0.1409 ExpInf 0.3829
12. NewHouse 0.1245 InfFor 0.3786
13. InfImpP 0.1225 MO 0.1793
14. PrvEmp 0.1219 POilSEK 0.1702
15. PPP 0.1134 USD 0.1170

analysis indicates that the weights based on the predictive likelihood will have better
small sample properties than the traditional in-sample marginal likelihood. The improved
small sample performance is due to the predictive likelihood considering both in-sample
fit and out-of-sample predictive performance where the latter protects against in-sample
overfitting of the data. The analytical results are supported by a simulation study and an
application to forecasting the Swedish inflation rate. Forecast combination based on the
predictive likelihood outperforms forecast combination based on the marginal likelihood
in both cases.

In practice we can not expect the true model or data generating process to be included
in the set of considered models. The simulation experiments indicate that this is also when
we can expect the largest gains from the use of the predictive likelihood. When there is a
true model the predictive likelihood will select the true model asymptotically but converge
slower to the true model than the marginal likelihood. It is this slower convergence coupled
with the protection against overfitting provided by explicitly considering out-of-sample
predictive ability that drives the better performance of the predictive likelihood when the
true model is not in the model set. The superior performance of the predictive likelihood
in the M-open case is also a likely explanation of the results for the Swedish inflation
forecasts.
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Table 3 Posterior model probabilities, 4 quarters ahead Swedish inflation forecast for
1999Q1.

(a) Predictive likelihood, [ = 44

Model
Variable 1 2 3 4 5
InfRel X X X X
InfRel_; X X
ExpInf X X X X X
R5Y X X X X
InfF1 X X X X
InfF1_4 X
InfUnd X X X X X
UsDh X X X X
GDPTCW X X
GDPTCW_, X
Post. Prob | 0.0538 0.0301 0.0218 0.0187 0.0184

(b) Marginal likelihood

Model
Variable 3
Ppl664
Pp1529
InfHUWg
AFGX_4
PpTot
PpTOt,1
R3M_;
InfFor
InfFor_; X
POilSEK X
NewJob_, X X

PP2534 X X

Post. Prob | 0.1316 0.0405 0.0347 0.0264 0.0259

X X X X X X X|=
X X X X X X[
X X X X X X
X X X X X |
X X X X X |t
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Appendix A Marginal and predictive likelihoods

A.1 Marginal likelihood

Consider a linear regression model for y* = (y1, %2, ..., Ym)’
y* ~ Np, (2*7*7 U2Im) ) (A1>
v~ (B, (k+1) x 1, (A.2)
Z" = (¢,X"), (A.3)

with following priors for the parameters

p(¥'10%) ~ Nt (0.c0%(2727) 1), (A4)
p() x5 (A5)

This yields the Normal-Inverted Gamma-2 posterior density

¥ ly*, 0% ~ Nt (1,02 (M) ),
o?ly* ~ IG5 (S*,m),

(A

(A

M= gz (A.
(A

c+1 c+1

The marginal likelihood is then

1
1z *|§
11277

m (S*)—m/Q _ (C + 1)(—k+1)/2 (S*>—m/2 . (A].].)

m(y)

A.2 Predictive likelihood

The predictive density of ¥ = (Yms1, Ymsos---,yr) 18
5’|ZZ*,}’*77*,02NN1 <z7*a021l> ) (A12)
where Z is a | x (k + 1) matrix of observations of the future exogenous variables. The

) |

(A.13)

joint density of v* and y conditionally on o2, Z, Z*,y* is Normal

Y\ 5 e + 2 Y1 9 (1\/1*)_1 (1\/1*)_1 7
-~ 7,7 ~ N, ~ ~ ~ ~
( y )' Y S (( Z, ) 7 [ Z(l\/I*)_1 L+ Z(M*)_IZ’

See Bauwens, Lubrano, and Richard (1999) for further details.
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As o?|y*, Z* ~ IG4 (S*,m) it follows that the predictive density of y is multivariate

Student and defined by
~ ~ - -1
VIZ,Z", y* ~ 1, (Z’yl,S*, <Il—|—Z(1\/I*)71 ’> ,m) (A.14)

with the density function
m x\m/2
I (75) (57)™ (A.15)

p(91Z) = ~ ~
(512 mT (3) [14+Z (M) 7

1/2

s+ -z (raowz)  (5oz)|
P <§f| Z) x m%; (A.16)
—T/2

<[+ (3-20) (o200 2) " (5 2m)
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Appendix B MCMC algorithms

B.1 Predictive likelihood

Algorithm 1 Reversible jump Markov chain Monte Carlo
Suppose that the Markov chain is at model M, having parameters 6,,, where 6, has
dimension dim (6 ) .

1. Propose a jump from model M to a new model M’ with probability j(M'|M).

2. Generate vector u (which can have different dimension than 0 ,) from a specified
proposal density ¢ (u| @, M, M').

3. Set (Orr,0') = grarr (O, ), where gag o is a specified invertible function. Hence
dim (@) + dim (u) = dim (0 r¢,) + dim (u’). Note that gy = 9/_\/11,/\/1"

4. Accept the proposed move with probability

L(y10m, M) p (Orrly*, M) p (M) j (M|IM)
L(§10p, M) p (Omly*, M) p (M) j (M'|M)
q (0|0, M', M) ‘39/\/1,/\4' (O, 1)
q (u]|@r, M, M) 0 (O, )

a = min{l,

}. (B.1)

5. Set M = M’ if the move is accepted.

If all parameters of the proposed model are generated directly from a proposal dis-
tribution, then (Opr¢,u’) = (u,0,) with dim (@) = dim (u’) and dim (@) = dim (u)
and the Jacobian is unity. If, in addition, the proposal ¢ (u|@a, M, M) is the posterior
p(@rr|y*, M) then (B.I) simplifies to

_ i {1 POl M) p (M) § (MIM)
‘T {1’ p(yly*, M)p (M) j (M'|M) } (B-2)
p §ly', M) = L1 M) p Ourly™, M1) (B.3)

p(Orly,y s M)
Note that this implies that we don’t need to sample the parameters since the acceptance
probability depends only on the predictive likelihood. This is the form of the algorithm we
use where steps 2 and 3 are omitted. Two types of model changing moves are considered:

1. Draw a variable at random and drop it if it is in the model or add it to the model
(if kaq < K'). This step is attempted with probability pa.

2. Swap a randomly selected variable in the model for a randomly selected variable
outside the model (if krq > 0). This step is attempted with probability 1 — pa4.

Note that for these two moves j (M|M’) = j (M’|M) and the acceptance ratio simplifies
further.
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B.2 Marginal likelihood

The same basic algorithm is used with the marginal likelihood. The only difference is
that we substitute L (y|0 v, M) p (Orr| M) for L (§100, M) - p (Orr]y*, M) in (B.1).
A similar simplifications of the acceptance ratio is available here by taking the posterior
as the proposal distribution for the parameters and the acceptance ration simplifies to

o — min (1 m (y\M’)p(M’))
" m(y|M)p (M)

and it is not necessary to sample the parameters.
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Appendix C Simulation results

[ is the size of the hold-out sample, ML is the marginal likelihood

Table C.1 RMSFE for simulated small data set, 91—closed view.

[  RMSFE [ RMSFE [ RMSFE [ RMSFE
2 3.5707" 23 2.7788" 44  2.6768* 65  2.6500
5 3.3016* 26 2.7489* 47 2.6742F 68  2.6457
8 3.1063* 29 2.7134" 50 2.6735" 71 2.6429
11 2.9778* 32 2.6958" 23  2.6685* 74 2.6384
14 2.8984* 35 2.6886" 56  2.6623 77 2.6365
17 2.8452* 38  2.6760 59  2.6637 80  2.6357
20 2.8071* 41 2.6726* 62 2.6569 83  2.6333
ML  2.6406

* significantly different from the ML RMSFE at the 5% level

Table C.2 RMSFE for simulated medium data set, 9t—closed view.

[ RMSFE [ RMSFE [ RMSFE [ RMSFE
2 3.6542* 57 2.565H2* 112 2.5264 167 2.5111*
7 3.2287F 62 2.5576* 117 2.5246 172 2.5078*
12 2.9753* 67  2.5535* 122 2.5260 177 2.5064*
17 2.8058* 72 2.5490" 127 2.5262 182 2.5081*
22 2.7163* 77 2.5400 132 2.5246 187 2.5090*
27 2.6763* 82 2.5407 137 2.5225 192 2.5104*
32 2.6592* 87  2.5368 142 2.5238 197 2.5111*
37 2.6304* 92 2.5311 147 2.5246 202 2.5128*
42 2.6094* 97  2.5267 152 2.5194 207  2.5138*
AT 2.5879* 102 2.5246 157  2.5166 212 2.5125%
52 2.5753* 107 2.5228 162 2.5116" ML 2.5268
* significantly different from the ML RMSFE at the 5% level

Table C.3 RMSFE for simulated large data set, 9t—closed view.
[ RMSFE [ RMSFE [ RMSFE [ RMSFE
2 3.6861" 102 2.5603* 202 2.5415% 302 2.5322
12 2.9563* 112 2.5578* 212 2.54117 312 2.5323
22 2.7704% 122 2.5573* 222 2.5412* 322 2.5308
32 2.6926* 132 2.5567* 232 2.5390 332 2.5313
42 2.6547* 142 2.5525* 242 2.5377 342 2.5316
52 2.6262* 152 2.5538" 252 2.5359 352 2.5308
62 2.6021* 162 2.5519* 262 2.5341 362 2.5309
72 2.5893* 172 2.5481* 272 2.5341
82 2.5767* 182 2.5445* 282 2.5319 ML 2.5310
92  2.5685* 192 2.5418 292 2.5325

* significantly different from the ML RMSFE at the 5% level

30



Table C.4 RMSFE for simulated medium data set, 9t—open view.

[  RMSFE [  RMSFE [  RMSFE [  RMSFE
2 4.0380* 57  3.6365 112 3.6247 167 3.6000*
7 3.9237* 62 3.6331 117 3.6170* 172 3.5978*
12 3.8657* 67 3.6357 122 3.6174* 177 3.5966*
17 3.8043* 72 3.6383 127 3.6176* 182  3.5919*
22 3.7550* 77 3.6296 132 3.6163* 187  3.5966*
27  3.7224* 82 3.6330 137  3.6094* 192 3.5940*
32 3.6996* 87 3.6319 142 3.6072* 197 3.5919*
37 3.6843 92  3.6285 147  3.6072* 202 3.5938*
42 3.6758 97  3.6250 152 3.6059* 207 3.5990*
47  3.6651 102 3.6247 157 3.6051* 212 3.6025*
52  3.6484 107  3.6240* 162 3.6011* ML 3.6499
* significantly different from the ML RMSFE at the 5% level

Table C.5 RMSFE for simulated large data set, 91—open view.
[  RMSFE [  RMSFE [  RMSFE [  RMSFE
2 4.0297* 102 3.4832 202 3.4173* 302 3.3956*
12 3.7953* 112 3.4717 212 3.4117* 312 3.4001*
22 3.6960* 122 3.4675 222 3.4078* 322 3.3961*
32 3.6434* 132 3.4611 232 3.4067* 332 3.3977*
42  3.6136* 142 3.4569 242 3.4051* 342 3.3987*
52  3.5864* 152 3.4599 252 3.4021* 352 3.3984*
62 3.5591* 162 3.4629 262 3.4010* 362 3.4111*
72 3.5287* 172 3.4445 272 3.4000*
82 3.5083* 182 3.4279* 282 3.3997* ML  3.4605
92 3.4910 192 3.4172* 292 3.3969*
* significantly different from the ML RMSFE at the 5% level

Table C.6 RMSFE for simulated medium data set, break at t = 60.
[ RMSFE [  RMSFE [  RMSFE [  RMSFE
2 3.6698* 62 2.7543 122 2.7344* 182 2.8421*
12 3.1435* 72 2.7478* 132 2.7339* 192 2.8307*
22 2.9555* 82  2.7370* 142 2.7410* 202 2.8101*
32 2.8497* 92  2.7389* 152 2.7554 212 2.7882*
42 2.7871 102 2.7387* 162 2.7842
52  2.7663 112 2.7303* 172 2.8223* ML 2.7702

* significantly different from the ML RMSFE at the 5% level
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Table C.7 RMSFE for simulated medium data set, break at ¢ = 125.

[ RMSFE [ RMSFE [ RMSFE [ RMSFE

2 3.6362* 62  2.8903* 122 2.8534 182 2.8443*
12 3.1208* 72 2.8796 132 2.8523 192 2.8431*
22 297117 82  2.8708 142 2.8519 202 2.8437
32 2.9365* 92 2.8683 152 2.8490* 212 2.8457*
42 2.9113* 102 2.8637 162 2.8458"

52  2.8876 112 2.8543 172 2.8463" ML  2.8660

* significantly different from the ML RMSFE at the 5% level

Table C.8 RMSFE for simulated medium data set, break at ¢ = 190.

[ RMSFE [ RMSFE [ RMSFE [ RMSFE

2 3.9198* 62 3.2273" 122 3.2592* 182 3.5203*
12 3.4978* 72 3.2118" 132 3.2917* 192 3.5621*
22 3.3469" 82  3.2090* 142 3.3237* 202 3.5999*
32 3.2915* 92  3.21147 152 3.3724% 212 3.62717
42 3.2591F 102 3.2230* 162 3.4276*

52 3.24437 112 3.2408* 172 3.4726" ML  3.6908

* significantly different from the ML RMSFE at the 5% level
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Appendix D Data

The transformation codes for the time series are

Code Transformation
1 level
2 4 quarters log difference (Iny, — Iny;_4)
3 4 quarters growth rate (y; — y¢—4)
4 4 quarters percentage change ((y; — y¢—4) /Yi—a)

Table D.1 Financial variables

Variable Description Transf.
1.  GovDebt Government debt 2
2. AFGX Affarsvarlden stock index 2
3.  REPO Repo rate 1
4.  DISK Discount rate 1
5.  R3M 3 month money market rate 1
6. RbHY 5 year government bond rate 1
7.  RI10Y 10 year government bond rate 1
8. GBor Central government borrowing requirement 1
9. RsTCW Short rate (TCW) 1
10. RITCW Long rate (TCW) 1
Table D.2 Exchange rates
Variable = Description Transf.
11. NFX Effective exchange rate (TCW) 2
12. RFX Effective real exchange rate (TCW) 2
13. USD SEK/USD exchange rate 2
14. DEM SEK/DEM exchange rate 2
Table D.3 Money supply
Variable Description Transf.
15. MO Narrow money 2
16. M3 Broad money 2
Table D.4 Labor costs
Variable Description Transf.
17. WCSS Wages incl. social security 2
18, WgCst Wages excl. social security 2
19. WageMM Hourly wages, mining and manufacturing 2
20. HLCInd Hourly labor cost: total industry 2
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Table D.5 Population

Variable Description Transf.
21. PpTot Total population 2
22. Ppl664 Share in ages 16-64 2
23. Pp014 Share in ages 0-14 2
24. Ppl529 Share in ages 15-29 2
25. Pp2534 Share in ages 25-34 2
26. Pp3049 Share in ages 30-49 2
27. Ppd064 Share in ages 50-64 2
28. Pp6574 Share in ages 65-74 2
29. Pp75+ Share 75 and older 2

Table D.6 Labor market variables

Variable Description Transf.
30. AvJob # of available jobs 2
31. LabFrc # in labor force 2
32. NLFrc # not in labor force 2
33. RelLF LabFrc/Pp1664 1
34. Empld # employed 2
35.  PrvEmp # privatly employed 2
36. PubEmp # publicly employed 2
37.  Av4aWrk # available for work 2
38. NA4Wrk # not available for work 2
39. NUnemp # unemployed 2
40. Unemp Unemployment 1
41. U02W # unemployed < 2 weeks 3
42. U314W # unemployed 3 - 14 weeks 3
43. Ulb52W # unemployed 15 - 52 weeks 3
44. UbB2W+ # unemployed more than 52 weeks 3
45. NewlJob New jobs 3

Table D.7 Real activity and Expectations

Variable Description Transf.
46. IndProd Industrial production 4
47. NewCar New cars 1
48. NewHouse New single family houses 1
49. HourWork  Hours worked 2
50. GDP GDP 2
51. RGDP Real GDP 2
52. NAIRU NAIRU 1
53. OutGap Output gap 1
54. ProdGap Production gap 1
55. BCI Business confidence indicator 1
56. HExpSWE  Household exp. Swedish economy 1
57. HExpOwn  Household exp. own economy 1
58. GDPTCW  TCW-weighted GDP 2
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Table D.8 Prices

Variable Description Transf.
59. InfFor Foreign CPI (TCW) 4
60. InfRel Relative CPI 4
61. PPP Real exchange rate 4
62. Infla Swedish CPI 4
63. InfNet Swedish NPI 4
64. InfHse House price index 4
65. MrtWgh Weight of mortgage interest in CPI 1
66. InfUnd Underlying inflation 4
67. InfFd Food component of CPI 4
68. InfF1 Housing fuel and electricity comp. of CPI 4
69. InfHWg Factor price index, housing incl. wages 4
70. InfCns Construction cost index 4
71. InfPrd Producer price index 4
72.  InflmpP Import price index 4
73. InfExp Export price index 4
74. InfTCW TCW-weighted Swedish CPI 4
75.  Explnf Households exp. of inflation 1 year from now 1
76. POilUSD Oil price, USD 4
77. POIISEK Oil price, SEK 4

35



	Introduction
	Forecast  combination  using  Bayesian  model averaging
	Model choice and large sample properties 
	Asymptotic Bayes factors
	Asymptotic partial Bayes factors

	Small sample properties 
	Monte Carlo study
	Results for M-closed view and M-open view with constant parameters
	Results for M-open view with shifting parameters

	Forecasting the Swedish inflation rate
	Results

	Conclusions 
	Appendix Marginal and predictive likelihoods
	Marginal likelihood
	Predictive likelihood

	Appendix MCMC algorithms
	Predictive likelihood
	Marginal likelihood

	Appendix Simulation results
	Appendix Data



