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ABSTRACT 

Model Averaging and Value-at-Risk Based Evaluation of Large 
Multi-Asset Volatility Models for Risk Management* 

This paper considers the problem of model uncertainty in the case of multi-
asset volatility models and discusses the use of model averaging techniques 
as a way of dealing with the risk of inadvertently using false models in portfolio 
management. Evaluation of volatility models is then considered and a simple 
Value-at-Risk (VaR) diagnostic test is proposed for individual as well as 
‘average’ models. The asymptotic as well as the exact finite-sample 
distribution of the test statistic, dealing with the possibility of parameter 
uncertainty, are established. The model averaging idea and the VaR 
diagnostic tests are illustrated by an application to portfolios of daily returns 
based on 22 of Standard & Poor’s 500 industry group indices over the period 
1995-2003. We find strong evidence in support of ‘thick’ modelling proposed in 
the forecasting literature by Granger and Jeon (2004). 
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1 Introduction
Multivariate models of conditional volatility are of crucial importance for op-
timal asset allocation, risk management, derivative pricing and dynamic hedg-
ing. However, their use in practice has been rather limited, particularly in the
case of portfolios with a large number of assets. There are only a few pub-
lished empirical studies that consider the performance of multivariate volatility
models involving a large number of assets, and for operational reasons most
of these studies focus on highly restricted versions of the multivariate general-
ized autoregressive conditional heteroscedastic (GARCH) model of Bollerslev
(1986). The risk associated with possible model misspecification could then
be sizeable. Also for risk-management purposes, the main focus is often on the
tail behaviour of the predictive density of the asset returns, and not simply
to obtain the ‘best’ approximating volatility model. This in turn implies that
a unified treatment of empirical portfolio analysis requires shifting the focus
from a statistical to a decision-theoretic framework for model evaluation. This
paper provides an integrated econometric approach to monitoring of market
risk in the case of large portfolios that are often encountered in practice. The
various issues involved are discussed and evaluated in the context of an em-
pirical application.
Many variants of the multivariate GARCH have been proposed in the lit-

erature. These include the conditionally constant correlation (CCC) model of
Bollerslev (1990), the Riskmetrics specifications popularized by J.P.Morgan
(1996), and used predominantly by practitioners, the orthogonal GARCH
model of Alexander (2001), and the dynamic conditional correlation (DCC)
model advanced by Engle (2002).1 Recent surveys are provided in Bauwens,
Laurent, and Rombouts (2003) and McAleer (2005). Multivariate stochastic
volatility (SV) models have also been considered in the literature, with reviews
by Ghysels, Harvey, and Renault (1995) and Shephard (2004).2 We consider
models frequently used by practitioners together with many models recently
proposed in academic papers, and consider their empirical performance within
a decision-theoretic framework.
The highly restricted nature of the multivariate volatility models advanced

in the literature could present a high degree of model uncertainty which ought
to be recognized at the outset. This is particularly important since due to
data limitations and operational considerations it is not possible to subject
these models to rigorous statistical testing either. Application of model se-
lection procedures also involves additional risks when the number of assets is
moderately large, and might very well be that no single model choice would

1The DCC model is also related to the VCC model of Tse and Tsui (2002).
2So far the focus of the SV literature has been on univariate and multivariate models

with a small number of assets, with the notable exceptions of Diebold and Nerlove (1989),
Engle, Ng, and Rothschild (1990), King, Sentana, and Wadhwani (1994) and Harvey, Ruiz,
and Shephard (1994), that are similar in structure to the class of factor GARCH models
that we do consider below.
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be satisfactory in practice and could carry risks that are difficult to assess a
priori. This paper considers model averaging as a risk diversification strat-
egy in dealing with model uncertainty, and provides a detailed application
of recent developments in model averaging techniques to multi-asset volatility
models. Frequently used model selection criteria are Akaike Information Crite-
rion (AIC) and the Schwartz Bayesian Information Criterion (SBC). However,
such a two-step procedure is subject to the pre-test (selection) bias problem
and tends to under-estimate the uncertainty that surrounds the forecasts. Of
course, the use of model averaging techniques in econometrics is not new and
dates back to the work of Granger and Newbold (1977) on forecast combi-
nation.3 However, this literature focusses on combining point forecasts and
does not address the problem of combining forecast probability distribution
functions which is relevant in risk management.
Concerning model evaluation, the standard forecast evaluation techniques

that focus on metrics such as root mean square forecast errors (RMSFE),
also run into difficulties when considering volatility models. Since volatility
is not directly observable, it is often proxied by square of daily returns or
more recently by the standard error of intra-daily returns, known as realized
volatility (see, for example, Andersen, Bollerslev, Diebold, and Labys (2003)).
In multi-asset contexts the use of standard metrics such as RMSFE is further
complicated by the need to select weights to be attached to errors in forecasts
of individual asset volatilities and their cross-volatility correlations and choice
of such weights is not innocuous in a multivariate framework (see Pesaran and
Skouras (2002)). Here we develop a simple criterion for evaluation of alter-
native volatility forecasts by examining the Value-at-Risk (VaR) performance
of their associated portfolios. Our test, which can be applied to individual as
well as to average models, belongs to a class of so-called unconditional cov-
erage tests, the most important case of which is Kupiec (1995) binomial test.
In contrast to the existing literature, though, we formally establish both the
asymptotic as well as the exact finite-sample distribution of our test statis-
tics. Further, we provide formal conditions that permit to ignore the potential
effect of the sampling variability associated with estimation. Conditional cov-
erage tests (see Christoffersen (1998)) and density forecast tests (Crnkovic and
Drachman (1997) and Berkowitz (2001)) could also be adapted to our model
averaging framework, although the related distribution theory will need to be
established. For a review of existing approaches to the evaluation of the VaR
estimates see Ling (1999). The VaR based diagnostic tests developed in this
paper can be used both for risk monitoring of a given portfolio as well as for
construction of optimal (in the VaR sense) portfolios.
The remainder of the paper is organized as follows: the decision problem

that underlies the VaR analysis is set out in Section 2. Section 3 provides a
brief outline of the different types of multivariate volatility models considered

3For reviews of the forecast combination literature see Clemen (1989), Granger (1989),
Diebold and Lopez (1996) and Hendry and Clements (2002).

2



in the paper, with a more detailed description available from the authors on
request. Several approaches to model averaging are reviewed and discussed in
Section 4. Section 5 introduces the Value-at-Risk (VaR) diagnostic test and
establishes its finite-sample as well as its asymptotic distribution. Section 7
provides a detailed empirical analysis using daily returns on twenty two of
Standard and Poor’s 500 industry indices over the period January 2 1995 to
October 13 2003. Section 8 concludes with a summary of the main results and
suggestions for future research. The mathematical proofs are provided in an
Appendix.

2 The Decision Problem
This paper is concerned with the decision of an individual fund manager who
is interested in controlling the risk of a given portfolio over a given trading
day. Denote the fund manager’s asset positions at the close of business on
day t − 1 by the N × 1 vector, at−1 = (a1,t−1, a2,t−1, ..., aN,t−1)

0. The change
in the value of this portfolio is given by ∆Vt =

PN
j=1 (Pjt − Pj,t−1) aj,t−1 =PN

j=1 aj,t−1Pj,t−1rjt, where Pjt is the price of the jth asset at time t and rjt =
(Pjt − Pj,t−1) /Pj,t−1 is the associated daily rate of return, assuming negligible
dividend payments for sake of simplicity. The rate of return of the portfolio
can now be written as ρt = ∆Vt/Vt−1 = ω0t−1rt, where rt = (r1t, r2t, ..., rNt)

0,
and ωt = (ω1t, ω2t, ..., ωNt)

0, with ωit = aitPit/
PN

j=1 ajtPjt. By construction
τ 0ωt−1 = 1 where τ is an N × 1 vector of unity. In the case of a fund
manager who has been given the task of allocating a given sum, Vt−1 on
the N assets without the possibility of shorting, we have the additional non-
negativity restrictions, ωit ≥ 0, for all i.
The fund manager faces two different but closely related tasks, which we

refer to as ‘passive’ and ‘active’ risk management problems. Under the latter
the portfolio weights are treated as unknown and are determined by maximiz-
ing the expected utility of the portfolio, derived with respect to the conditional
multivariate distribution of rt, subject to the non-negativity constraints (if ap-
plicable) and to the VaR constraint Pr

¡
ρt < −ρ̄t−1 |Ft−1

¢
≤ α, where Ft−1

is the available information, ρ̄t−1 > 0 is a pre-specified rate of return and α
is a probability value (typically taken to be 1%) which captures the trader’s
attitude to risk in the case of large losses. Under passive risk management
ωt−1 and α are assumed as given and the aim would to solve for ρ̄t−1 (ωt−1,α)
using

Pr
¡
ρt < −ρ̄t−1 (ωt−1,α) |Ft−1

¢
≤ α. (1)

The capital at risk of the portfolio is then Lt−1 (ωt−1,α) = Vt−1ρ̄t−1 (ωt−1,α),
namely the maximum loss tolerated over day t− 1 to t with probability α.

3



3 Multivariate Models of Asset Returns
For active risk management, a complete knowledge of the joint probability
distribution of the vector of returns rt, conditional on available information,
Ft−1, would be needed. But for passive risk management it is clearly pos-
sible to work directly with the conditional distribution of ρt = ω0t−1rt, with
no apparent need for multivariate volatility modelling. Such a strategy is
relatively simple to implement, but will be portfolio specific and could lead
to contradictory outcomes if different portfolios are considered. Moreover, in
comparing the risk of different portfolios it is important that the distribution
of all portfolio returns are based on the same underlying multivariate model
of rt.
Our primary concern in this paper is on modelling and evaluation of al-

ternative multivariate volatility models in a wider context that nests both
passive and active risk management problems. Therefore, in what follows
we shall focus on alternative specifications of the joint probability distribu-
tion of asset returns that we denote by Pr (rt |Ft−1 ). For this purpose it is

convenient to work with the de-volatized returns, zt, defined by zt = Σ
−1
2

t rt,
where Σt = V ar (rt |Ft−1 ) is the conditional covariance matrix of the returns
assumed to be positive definite. Typically one would also need to model the
conditional mean, E (rt |Ft−1 ) = μt, although given the focus of the present
paper on multivariate volatility models and the daily nature of the returns
data that we shall be using to illustrate our approach we shall maintain that
μt = 0, throughout.
A complete specification of Pr (rt |Ft−1 ) can be achieved by: (i) a non-

singular choice of Σt; (ii) specification of the distribution of de-volatized val-
ues, zt. For the latter, we focus on distributions that are closed under linear
transformations. This includes the case of standard multivariate Gaussian,
and the multivariate Student t with v degrees of freedom. These are the two
specifications that are most commonly encountered in practice. In specifying
Σt, we focus on parametric volatility models, the classical example of which is
the multivariate generalized autoregressive heteroskedasticity model of order
1, 1 (MGARCH(1, 1)). In its most general form it is given by4

vech(ΣMGARCH,t) = ω0+A0vech(ΣMGARCH,t−1) +B0vech
¡
rt−1r

0
t−1
¢
, (2)

where vech(.) denotes the column stacking operator of the lower portion of a
symmetric matrix, ω0 is an N(N + 1)/2 × 1 vector, and A0, B0 are N(N +
1)/2 ×N(N + 1)/2 matrices of unknown coefficients. It is evident that even
such a low-order model already contains a large number of parameters even
for moderate values of N which renders model (2) effectively unfeasible for
practical applications.
The different multivariate volatility models considered in this paper are

special cases of the MGARCH(1, 1). These volatility models are denoted by

4See Bollerslev, Engle, and Wooldridge (1988, eq. 4).
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Mi and the associated conditional covariance matrix by Σit. Altogether we
consider 63 different specifications of Σit that can be grouped into ten different
model types.
We consider both econometric specifications advanced in the academic

literature as well as ad hoc data filters more commonly used by practition-
ers. Within the first group, we considered the constant conditional correla-
tion (CCC(p, q)) model of Bollerslev (1990) and its more recent generaliza-
tions, namely the dynamic conditional correlation (DCC(p, q, 1, 1)) of Engle
(2002) and the asymmetric dynamic conditional correlation (ADCC(p, q, 1, 1))
of Cappiello, Engle, and Sheppard (2002). We also consider the orthogonal
GARCH (O-GARCH(p, q)) of Alexander (2001), the factor GARCH model
of Harvey, Ruiz, and Sentana (1992) (factor HRS (p, q, 1, 1)) and the factor
GARCH of Diebold and Pesaran (1999) (factor DP (p, q, 1, 1)). Within the sec-
ond group we consider equal-weighted moving average (EQMA(n0)), which is a
rolling filter that equally weights the most recent n0 squared observations. We
further consider the exponential-weighted moving average (EWMA(n0, λ0)),
well known as the Riskmetrics filter (see J.P.Morgan (1996)) and a number
of its variants such as the two-parameter exponential-weighted moving aver-
age (EWMA (n0, λ0, ν0)) (see De Santis, Litterman, Vesval, and Winkelmann
(2003, p.14)). We also consider two hybrid filters: a mixed moving average
(MMA(n0, ν0)) specification whereby the conditional variances are computed
as in the EQMA(n0) model but with the conditional covariances obtained us-
ing the Riskmetrics approach; and a generalized exponential-weighted moving
average (EWMA(n0, p, q, ν0)) whereby conditional variances are modelled as
univariate GARCH(p, q) with the conditional covariances specified using the
Riskmetrics approach. More detailed accounts are given in a Supplement that
is available from the authors on request.
Let θi0 be the ki×1 vector of coefficients characterizing the true unknown

parameters of the volatility model, Mi, denoted by Σit= Σit(θi0). For es-
timation of θi0 we shall be using the Gaussian pseudo maximum likelihood
estimator (PMLE), defined by

θ̂iT0 = arg max
θi∈Θi

(
−1
2

τX
t=τ−T0+1

¡
log | Σit(θi) | +r0tΣ−1it (θi)rt

¢)
, (3)

where Θi represents a suitable parameter space, τ is the end of the estimation
period, T0 is the size of the estimation period. Correspondingly, let Σ̂it =
Σit(θ̂iT0). We view Gaussian PMLE as a robust method, delivering consistent
and asymptotically normal estimates of θi under the volatility modelMi even
for non-Gaussian zit. In particular we shall assume that as T0 →∞,

θ̂iT0
p→ θi0 (4)

and p
T0

³
θ̂iT0 − θi0

´
|Mi

d→ N [0,Ωi (θi0)] , (5)
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where Ωi (θi0) is a positive definite matrix,
p→ denotes convergence in prob-

ability and d→ convergence in distribution. The asymptotic properties of
the Gaussian PMLE have been established for certain classes of multivari-
ate GARCH-type volatility models (see Ling and McAleer (2001)) and it is
reasonable to expect that results such as (4) and (5) would hold for the more
general class of models considered in this paper, under suitable regularity
conditions.
In what follows we shall assume that under model Mi,

Mi : rt = Σ
1
2
itzit, zit | F t−1 ∼ (Fit, 0, IN), (6)

meaning that E (zit | F t−1,Mi ) = 0, E (zitz
0
it | F t−1,Mi ) = IN , where IN is

the N ×N identity matrix, and Fit(.) is the the conditional joint probability
distribution function of zit. Note that the above formulation allows the higher
order moments of zit to be time varying. This would be the case, for example,
when zit is distributed as the multivariate Student t with time varying degrees
of freedom, vt.

4 Average Volatility Models
Considering the restrictive nature of the multivariate volatility models in the
literature, model averaging techniques that explicitly allow for parameter and
model uncertainty could be particularly important in risk management. Let
Pr(rt |Ft−1 ,Mi), be the predictive density of rt conditional on model Mi and
the in-sample available information, Ft−1, and let the space of the models
under consideration be M =

Sm
i=1 {Mi}. Each model Mi is fully specified

by the choice of the volatility model, Σit, and of the conditional probability
distribution, Fit, of devolatilized residuals, zit.
Model averaging implies a predictive density of rt conditional on Ft−1 given

by

Pr(rt |Ft−1, M) =
mX
i=1

λi,t−1 Pr(rt |Ft−1 ,Mi),

where the set of weights λi,t−1 are pre-determined at the time the decision over
the the portfolio weights, ωj,t−1, j = 1, 2, ...,N , is taken. This is possible since
it is assumed that there are no feedbacks from trade decisions to the probability
models being considered. One could consider equally weighting all the models
belonging toM yielding λi,t−1 = 1/m. A further refinement would be to apply
model averaging not to all of the models but only to a number of best perform-
ing models under consideration. Therefore, one could pool different models by
taking simple averages, but after ‘trimming’ models with poor performances.
Formally, this implies λi,t−1 = 1/nt−1 for i ∈ Nt−1 ⊂M, where nt−1 indicates
the cardinality of the sequence of subset of models Nt−1. Such procedure,
denominated as ‘thick’ modelling, has been proposed by Granger and Jeon
(2004) who note that, among others, standard two-stage procedures, based
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on the AIC or SBC method, might exhibit poor performance simply because
the ‘true’ model does not belong to the set of models under consideration.5

Another example is the Bayesian Model Averaging (BMA) that combines
the models under consideration using their respective posterior probabilities.6

BMA requires λi,t−1 = Pr(Mi |Ft−1 ), where the latter denotes the posterior
probability of model Mi. The BMA approach requires specifications of the
prior probability of modelMi and of the prior probability of θi conditional on
Mi, for i = 1, 2, ...,m. BMA can be quite demanding computationally, partic-
ularly in the case of multi-variate volatility models with many unknown pa-
rameters. As a result, the model weights λi,t−1 are often approximated by the
Akaike weights or the Schwartz weights. The latter gives a Bayesian approx-
imation when the estimation sample, T0, is sufficiently large.7 In particular,
setting λi,t−1 = exp(∆i,t−1)/

Pm
j=1 exp(∆j,t−1), in the case of AIC and SBC we

have ∆i,t−1= AICi,t−1−Maxj(AICj,t−1),∆i,t−1= SBCi,t−1−Maxj(SBCj,t−1),
where in turn AICi,t−1 = LLi,t−1−ki, SBCi,t−1 = LLi,t−1−

¡
ki
2

¢
ln(t−1), and

LLi,t−1 indicates the maximized logarithm of the joint probability distribu-
tion, with ki parameters, of the observations r1, r2, ..., rt−1 conditional on the
given initial values r0, ..., r−si+1.

8

In this paper, we implement both the ‘thick’ modelling and the (approx-
imate) BMA procedures. The former is carried out by first ranking the in-
dividual models according the AIC or SBC criteria, and then constructing
an ‘average’ model based on a given number of top-percentile (say the top
25%) of all the models under consideration. Therefore, we still make use of
the information contained in AIC and SBC criteria, but only to trim-out the
poorly performing models. Under this approach the models that survive will
be given equal weights.
In contrast to applications that focus on point forecasts, in the case of

density forecasting the choice of the number of models to be used in the
model averaging process and the differences in their forecast error variances
have important implications for the shape of the resulting average model in
general and the degree of its fat-tailness, in particular. It seems likely that
averaging across a very large number of models could be counter productive for
density forecasting, although it might not be a problem in point forecasting.

5See Stock and Watson (1999) for an application to macroeconomic time series and
Aiolfi, Favero, and Primiceri (2001) for an application of ‘thick’ modelling to point forecasts
of excess returns across different models.

6A formal Bayesian solution to the problem of model uncertainty is reviewed, for ex-
ample, in Draper (1995) and Hoeting, Madigan, Raftery, and Volinsky (1999). Recent
applications to time series econometrics are provided in Fernandez et al. (2001a,b), Gar-
ratt, Lee, Pesaran, and Shin (2003) and Godsill, Stone, and Weeks (2004).

7In the empirical applications to be discussed below T0 is sufficiently large and pa-
rameter uncertainty is likely to be of second order importance. Also see Burnham and
Anderson (1998, Chapter 4).

8We do, however, recognize that for small to moderate sample sizes used in macro-
economic applications the choice of priors could be important, particularly if the object
of exercise is the estimation of the marginal probability densities.
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Further analysis of average models and their tail properties will be provided
below in Section 6.

5 Value-at-Risk Based Diagnostic Tests
This section examines the evaluation of multivariate volatility models from
the perspective of risk management. First we consider the problem for a given
model, Mi. Next, we describe how the analysis can be extended to models
obtained by application of model averaging techniques.

5.1 VaR Diagnostics for Individual Models

In the econometric literature models are often evaluated by their out-of-sample
forecast performance using standard metrics such as the RMSFE but, as noted
earlier, the application of this approach to volatility models is subject to a
number of difficulties. An alternative approach would be to employ decision-
based evaluation techniques and compare different volatility models in terms
of their performance in trading and risk management.9 In this sub-section we
propose simple examples of such a procedure based on the VaR problem set
out in Section 2.
Consider first the VaR constraint (1) associated with the passive version

of the risk management problem where the portfolio weights, ωt−1, are given,
and suppose that the analysis is carried out conditional on model Mi. In this
setting the VaR constraint is given by

Pr
¡
ρt < −ρ̄i,t−1 |Ft−1,Mi

¢
≤ α, (7)

and ρ̄i,t−1 will be a function of α and the assumed volatility model, Mi. To
fully specify the model, assume that the de-volatized returns, zit, have a joint
cumulative distribution function Fit(·) which is closed under linear combi-
nations so that c0zit also has (univariate) distribution Fit(·) for any fixed
N-dimensional vector c. A special case of our results is obtained if zit is
assumed to follow the multivariate normal or the Student t distribution. Con-
ditional on Ft−1 and modelMi being true, ρt will have mean zero and variance
σ2ρt(Mi) = ω0t−1Σitωt−1. Therefore, under (6) we have

zρt(Mi) =
ω0t−1rt
σρt(Mi)

|Ft−1,Mi ∼ (Fit, 0, 1). (8)

This implies that under Mi, zρt(Mi) is a martingale difference sequence with
a unit variance. Note, however, that zρt(Mi) need not be independent across
time. Temporal dependence in zρt(Mi) could arise not only due to possible
higher-order moment dependence of the underlying innovations zit, but also

9For a general discussion of decision-based evaluation techniques see Pesaran and Sk-
ouras (2002).
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because of possible serial dependence of portfolio weights and the temporal
dependence of Σit.
Denoting the value of ρ̄i,t−1 that satisfies (7) by ρ̄i,t−1(ωt−1,α) and assuming

that (8) holds, then Fit

¡
−ρ̄i,t−1(ωt−1,α)σ

−1
ρt (Mi)

¢
≤ α. But since Fit(·) is a

continuous and monotonically non-decreasing function we have
−ρ̄i,t−1(ωt−1,α)σ

−1
ρt (Mi) = F−1it (α) = −cit(α), or

ρ̄i,t−1(ωt−1,α) =cit(α) σρt(Mi), (9)

where −cit(α) is the α% critical value of the distribution of zρt(Mi) conditional
on model Mi and Ft−1. Note that cit(α) and σρt(Mi) are based on observa-
tions available at time t − 1, and this is highlighted in the notation used for
ρ̄i,t−1(ωt−1, α).
The above derivations hold even if the portfolio weights, ωt−1, are derived

conditional on modelMi. In that case the portfolio weights should be denoted
by ωi,t−1 to highlight their dependence on the choice of the volatility model.
But to simplify the notations we continue to represent the portfolio weights
without the subscript i.
The evaluation of model Mi can now proceed in the following manner.

Suppose that the evaluation exercise starts on day t = τ +1 with the available
sample of T observations split at this date into T = T0+(T −T0) for some 0 <
T0 < T . Further suppose that the first T0 observations before day τ+1 are used
for estimation whereas the last T1 = T−T0 observations are used for evaluation
purposes. Accordingly, we define the sets of estimation and evaluation dates
by T0 = {τ − T0 + 1, τ − T0 + 2, ..., τ}, and T1 = {τ + 1, τ + 2, ..., τ + T1},
respectively.
A simple test of the validity of model Mi from the perspective of the VaR

can then be based on the proportion of days in the evaluation sample where
the VaR constraint is violated: π̂i =

P
t∈T1 dit(θ̂iT0)/T1, where dit(θ̂iT0) =

I[−ρt−cit(α) σ̂ρt(Mi)] and σ̂ρt(Mi) = (ω
0
t−1Σ̂itωt−1)

1
2 , Σ̂it = Σit(θ̂iT0). Recall

that θ̂iT0 is the PMLE of the unknown parameters (if any) of Σit under model
Mi (see (3)), and I(·) as an indicator function.
We now present two Theorems. The first establishes the distribution of

T1π̂i under the null hypothesis defined by

Hi0 : Σt = Σit and zit | Ft−1,Mi ∼ (Fit, 0, IN). (10)

for T1 <∞ and as T0 →∞. The second Theorem establishes the asymptotic
distribution of the following standardized test statistic based on π̂i

zπ̂i =

√
T1(π̂i − α)p
α(1− α)

(11)

underHi0, and as T1/T0+1/T1 → 0. The proofs of both theorems are provided
in the Appendix.
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Theorem 1 (finite-T1 distribution) Assume that Σit(θi) is continuous in θi
and that (5) holds. Let Bi(T1, α) define a Binomial distribution with para-
meters T1 and α. Then under Hi0,

T1π̂i
d→ Bi(T1, α), as T0 →∞, (12)

for any finite T1, 0 < α < 1, and any sequence of portfolio weights, ωt−1, t =
0,±1..., satisfying kωt−1k> 0, with k · k being the Euclidean norm.

Remark. This result is important for cases when T1 is small or, alternatively,
when one is interested in testing VaR performance of a given set of portfo-
lios for small values of α. In such cases the asymptotic normal distribution
presented below might not provide a sufficiently accurate approximation.

Theorem 2 (asymptotic distribution) Assume that (i) fit(·) = F 0
it(·) exists

and f̄it = supx fit(x) < ∞ for any t; (ii) condition (5) holds and θi0 be-
longs to the interior of the compact set Θi; (iii) Σit(θi) is twice continuously
differentiable in θi such that, for some δ > 1, infθi∈Θi λit(θi) > 0, a.s.

E{sup
θ∈Θi

k ∂λ̄it(θ)/∂θ k
λ
1
2
it(θ)λ

1
2
it(θi0)

}δ = μit,
1

T1

TX
t∈T1

f̄itμ
1/δ
it = O(1), (13)

where λ̄it(θi) and λit(θi) define, respectively, the maximum and the minimum
eigenvalues of Σit(θi), (iv) for T0 sufficiently large

E k θ̂iT0 − θi0 k
δ

δ−1= O(T
−δ/(2(δ−1))
0 ). (14)

Under Hi0, zπ̂i
d→ N(0, 1) as T1/T0 + 1/T1 → 0, any 0 < α < 1, for any

sequence of portfolios ωt−1, t = 0,±1..., satisfying kωt−1k> 0.

Remarks:
(i) It is important to note that the null distribution of zπ̂i does not depend
on the portfolio weights, ωt−1, although the power of the test typically does
depend on ωt−1.
(ii) The mild condition for consistency of the test is that π̂i does not con-
verge in probability to α as T1/T0 + 1/T1 → 0. This can happen if ei-
ther we use the wrong conditional covariance matrix or the wrong inno-
vation distribution, or both. For example, in the first case, under Mj :
Σjt 6= Σit we have E(π̂i|Mj) =

1
T1

P
t∈T1 E[Fit(−cit(α)qij,t)], where qij,t =

(ω0t−1Σ̂itωt−1/ω
0
t−1Σjtωt−1)

1/2, for t ∈ T1. It is clear that under Mj, qij,t
does not tend to unity and in general E(π̂i|Mj) will diverge from its hypoth-
esized value of α, and the power of the test tends to unity with T1.
(iii) Most likely, the assumptions required for (4) and (5) will imply (13)
but we felt it is necessary to make the additional explicit assumptions since
the former have been formally established only for a sub-class of multivariate
volatility models considered in this paper.
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(iv) When model Mi is not subjected to estimation, such as for some of the
models we consider, then the theorem applies by setting θ̂i = θi0 and the con-
ditions (13) and (14) are no longer needed. In particular, the non-singularity
condition of the model conditional covariance matrix is not required.
(v) Under the null hypothesis Hi0 : E(zρt(Mi) | Ft−1) = 0. This is a key
property since it implies that I [−zρ t(Mi)− cit(α)] − α is also a martingale
difference process. Strict stationarity of the asset returns is not required.
(vi) The importance of the condition T1/T0 → 0 in cross validation of forecasts
was put forward byWest (1996). McCracken (2000) extends West’s framework
to allow for non-differentiable loss functions in a regression set-up.

5.2 VaR-Based Diagnostics for Average Models

Suppose that set of m models is described by rt|Ft−1,Mi ∼ (Fit, 0,Σit), i =
1, 2, ...,m. Therefore, Fit(·) defines the conditional distribution of the observed
return rt, given Ft−1 and the volatility model Mi.
The probability distribution function of portfolio return, ρt, based on the

average model obtained with respect to these models using the weights, λi,t−1,

is then given by Pr(ρt < a |Ft−1,M) =
Pm

i=1 λi,t−1Fit

³
a

σρt(Mi)

´
. In cases

where Pr(ρt < a |Ft−1 ,Mi) does not have a closed form it needs to be com-
puted by stochastic simulations, noting that conditional on modelMi we have,
J−1

PJ
j=1 I(−ω0t−1r

(i)
jt +a)→ Pr(ρt < a |Ft−1 ,Mi) almost surely, as J →∞,

where J is the number of replications and r(i)jt is the j
th draw from the assumed

distribution of rt under Mi. On the other hand, when the probability distrib-
ution of rt underMi are closed under linear transformations, as with Gaussian
or multivariate t distribution, the computations can be simplified considerably
by drawing from the distribution of ρt = ω0t−1rt under Mi directly or using
the closed-form expression when the latter exists.
It is now easy to generalize the diagnostic test statistics given by (11) for

an individual model Mi, to the case of an average model. For a given α we
need to find the value for ρ̄b,t−1(ωt−1, α), the VaR associated with the BMA
forecast probabilities, for which

Pm
i=1 λi,t−1Fit(−ρ̄b,t−1(ωt−1,α)/σρt(Mi)) ≤ α.

To solve for ρ̄b,t−1(ωt−1,α), let

g(κ) =

mX
i=1

λi,t−1Fit

µ
− κ

σρt(Mi)

¶
− α = 0, (15)

and note that g(κ) = 0 has a unique positive solution under the additional as-
sumption that all the model densities fit(·) = F 0

it(·) are differentiable and have
a unique maximum at zero. In the case of such distributions ρ̄b,t−1(ωt−1,α) can
be easily computed using numerical techniques such as the Newton-Raphson
iterative procedure. The VaR diagnostic statistic, given by (11), can then be
computed for the average model using d̂bt = I

£
−ρt − ρ̄b,t−1(ωt−1,α)

¤
, in place

of dit(θ̂iT0).
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6 Tail Behavior of Average Volatility Models
It is well known that linear combinations (mixtures) of normal distributions
is not normal, although the moments of the mixture distribution are ef-
fectively linear combinations of the corresponding moments of the individ-
ual normal distributions, with the same weights. For instance, the pooled
volatility forecast of portfolio return, with zero conditional means, is given
by V (ρt|Ft−1,M) =

Pm
i=1 λit−1σ

2
ρt(Mi). However, tail probabilities using the

mixture model and a Guassian model with the same average volatility are not
the same, namely

mX
i=1

λit−1Φ

∙
a

σρt(Mi)

¸
6= Φ

⎡⎣ aqPm
i=1 λit−1σ

2
ρt(Mi)

⎤⎦ , (16)

unless Σit = Σt for all i, where Φ(·) defines the normal cumulative distribution
function. The following Theorem, whose proof is reported in the Appendix,
characterizes the direction of the bias. In risk management applications where
a < 0 and one is interested in tail probabilities, it is easily seen that the
correctly combined model, on the left hand side of (16), will be more fat-tailed
than the associated Gaussian model with the same average volatility measure,
on the right hand side of (16), so long as a < −

√
3σρ t(Mi), i = 1, ...,m. As

we shall see this result has direct bearing on some of the empirical results that
we shall be reporting below.

Theorem 3 Let f(x) be a differentiable real function, with f 0 denoting its
first-derivative, with

R∞
−∞ | f(u) | du < ∞. Let F (z) =

R z
−∞ f(u)du. Then,

for any constant a and any finite sequence b1, ..., bN of strictly positive con-
stants satisfying

a [(a/b
1
2
i )f

0(a/b
1
2
i ) + 3f(a/b

1
2
i )] > 0, i = 1, ..., N, (17)

it follows that
NX
i=1

λiF
h
a/(bi)

1
2

i
> F

"
a/(

NX
i=1

λibi)
1
2

#
, (18)

for any finite sequence λ1, ..., λN of non-negative constants such that λ1 +
λ2 + ... + λN = 1, λi < 1 , i = 1, 2, ..., N .

Remarks:
(i) When f(u) is the standard normal density, for a < 0 condition (17) is

a/b
1
2
i < −

√
3, i = 1, ..., n. (19)

When a > 0 condition (17) is instead 0 < a/b
1
2
i <
√
3, i = 1, ..., n. although

note that when a > 0 (18) expresses the case where the tail probability of
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the average model is smaller than for the model with the average parameterPn
i=1 λibi.

(ii) When f(u) is the standardized Student t with ν > 2 degrees of freedom,
for a < 0 the same condition (19) applies, independently from ν.

7 An Empirical Application

7.1 Data and Some Preliminary Analysis

The model averaging and the associated VaR evaluation tests developed in this
paper can be applied to a variety of problems in finance. Here we shall consider
the daily VaR of portfolios constructed from 22 main industry indices of the
Standard & Poor’s 500. The source of our data is Datastream, which provides
twenty four S&P 500 industry price indices according to the Global Industry
Classification Standard. To ensure a sufficiently long span of daily prices we
have excluded the ‘Semiconductors & Semiconductor Equipment’ and ‘Real
Estates’ from our analysis. The list of the N = 22 industries included in our
analysis is given in the Note to Table 1. Our data set covers the industry in-
dices from 2nd January 1995 to 13th October 2003 (T = 2, 291 observation).
Daily returns are computed as rjt = 100 ln (Pjt/Pjt−1) , j = 1, ..., 22, where Pjt

is the jth price index. The realized returns rt = (r1t, r2t, ..., r22,t)0 exhibit all
the familiar stylized features over our sample period. See Table 1. They are
highly cross-correlated, with an average pair-wise cross-correlation coefficient
of 0.5. A standard factor analysis yields that the two largest estimated eigen-
values are equal to 11.5 and 1.7, with the remaining being all smaller than
unity. The unconditional daily volatility differs significantly across industries
and lie in range of 1.13% (Food, Beverage & Tobacco) to 2.39% (Technol-
ogy Hardware & Equipment). The first-order autocorrelation coefficients of
the individual returns are quantitatively very small (ranging from −0.049 to
0.054) and are statistically significant only in the case of four out of the twenty
two industries (Automobiles & Components, Health Care Equipment & Ser-
vices, Diversified Financial, and Utilities). We decided not to filter out any
serial correlation in the data since this would have probably induced a size-
able amount of noise, which could be more harmful than the small amount of
serial correlation present in the case of four of the assets. We derived non-
parametric estimates of the density functions for the standardized returns,
confirming that the marginal distributions tend to be symmetric and slightly
fat-tailed.
Estimates of univariate GARCH(1, 1) models for the returns, not reported

but available on request, also provide some support in favor of a Student t
distribution with a low degree of freedom for the conditional distribution of
the individual asset returns. The degrees of freedom estimated for the dif-
ferent assets lie in the narrow range of 5.2 to 11.7, with an average estimate
of 7.3 and a mid-point value of 8.5. These results provide some support for
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our working assumption of zero conditional mean returns, and highlight the
non-Gaussian and the highly cross correlated nature of the asset returns by
industries. Estimation of multivariate volatility models with non-Gaussian
distributions present considerable technical difficulties and are unlikely to sig-
nificantly affect the QMLE estimates, computed assuming Gaussian errors.
For risk management purposes, it seems justified to combine the QMLE esti-
mates with multivariate Student t distributions with low degrees of freedom.
Based on the univariate estimates, 6 and 8 degrees of freedom seem sensible
choices and will be considered below.

7.2 Recursive Estimation of Multivariate VolatilityMod-
els

For each of the ten types of multivariate volatility models listed in Section 3,
a number of variations were considered, depending on the choice of the win-
dow size (n0) when applicable, the pre-specified parameters of the Riskmet-
rics specifications (λ0, ν0) and the orders of the multivariate GARCH mod-
els (p, q, r, s). In particular, we considered the following parameter values
n0 = 50, 75, 125, 250, λ0 = 0.94, 0.95, 0.96, ν0 = 0.6, 0.8, 0.94, p, q ∈ {1, 2} and
r = s = 1. In the case of the factor models we considered only one factor.
All models were estimated recursively using an expanding window starting

with 1784 observations as the first estimation sample, with the parameter val-
ues (when applicable) updated at monthly intervals. Clearly, the parameters
of the volatility models could also have been updated daily. The monthly up-
dates of the parameters can be viewed as a plausible and practical solution to
a highly computer intensive problem.10 Therefore, the models were estimated
twenty-four times over the evaluation sample.
Since for certain values of p, q the estimation algorithm did not converge

for all models and all data periods, we ended up withm = 63 different (nested
and non-nested) models with convergent estimates. However, for some models
the algorithm converged except for a few isolated time periods. In such cases
the estimation results for the model in question was ignored by assigning a
zero weight to it in the model averaging procedure for the non-convergent
periods.11

The different volatility models were then evaluated over the last two years
of data (from November 2, 2001 to October 13, 2003, inclusive), with T1 = 507,
using one-day ahead forecasts of Σt under Mi, denoted by Σ̂it, i = 1, ..., 63,

10We also carried out a straightforward cross-validation test where all models (when
relevant) were estimated once using the first T0 = 1784 observations and then evaluated
using the last T1 = 507 observations. Perhaps not surprisingly, the results were generally
less satisfactory than those based on the recursively computed parameter updates. These
pure cross-validation results are available from the authors on request.
11All the computations have been carried out in MatLab and the codes are available

upon request. For estimation of CCC, DCC and O-GARCH we used the UCSD_GARCH
Toolbox developed by Sheppard (2002). All other codes are our own.
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and for a given choice of the distribution of the zit (which we took as Gaussian
or Student t with 6 and 8 degrees of freedom). The evaluations were carried out
with respect to an equal-weighted portfolio yielding the portfolio return ρt =
ω0t−1rt = r̄t. We also considered other portfolio weights, including portfolios
with time varying weights, and obtained very similar results. To save space,
however, we shall only report the results for the equal-weighted portfolio12.

7.3 Modelling Strategies

A number of different modelling strategies may now be considered. One possi-
bility would be to follow the classical approach and select the ‘best’ model from
the set of models under consideration using model selection criteria such as
AIC or SBC. Alternatively, the model uncertainty can be explicitly taken into
account using ‘thick’ modelling or Bayesian type model averaging procedures.
The former is implemented here using the top 25% and 50% of the models
selected according to AIC or SBC. We refer to these as ‘best’, ‘thick average’,
and ‘Bayesian average’ modelling strategies. As an extreme benchmark we
also consider an equal-weighted average model using all the 63 specifications.
See also Section 4.
When considering normal innovations, AIC selects the ADCC(1, 2, 1, 1)

throughout the evaluation period whereas SBC first selects the ADCC(1, 1, 1, 1),
then switches to ADCC(1, 2, 1, 1) from the middle of the sample onwards. In
the case of models under multivariate Student t with 6 and 8 degrees of free-
dom, AIC selected the O-GARCH(2, 2) in the first three weeks of the evalua-
tion sample, switching to DCC(1, 2, 1, 1) up to the middle of the sample, with
ADCC(1, 2, 1, 1) being selected thereafter. Similar results were also obtained
with SBC. With few exceptions, the DCC type models tended to dominate
the remaining specifications. This outcome is particularly interesting since
the evaluation sample includes the recent periods of large stock market falls
and contrast the outcome of recursive modelling applied to S&P mean returns
reported in Pesaran and Timmermann (1995) where the best model selected
for the monthly excess returns tend to change quite frequently over time.
This could be due to the relative stability of volatility models as compared to
models of mean returns that are known to be subject to structural breaks.
To provide some idea of the extent to which the DCC type models dominate

other specifications, in Table 2 we summarize selected values of the AIC-
penalized log-likelihood values, AICi,t−1, for all the 63 models computed using
a multivariate Student t distribution with 8 degrees of freedom. As can be seen
the DCC (and CCC) type models systematically fit the data better than the
other models, and the differences in the AIC-penalized log-likelihood values for

12It is also possible to use model-specific portfolio weights, ωi,t−1, where the weights
are determined recursively by a suitable expected utility maximization subject to the VaR
constraint. Such an exercise would also involve modelling of the conditional mean returns,
which has not been addressed in this paper. See Pesaran and Timmermann (2005) for a
discussion of such an estimation strategy in real time.
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the DCC and other models are sufficiently large for the model weights, λi,t−1,
of the DCC models, to take the extreme value of unity for most periods.13 It is
also interesting to note that on average the simplest of the data filters, namely
the equal weighted moving average specification, EQMA, with n0 = 125, or
250, do considerably better than the other filters and perform well even when
compared to estimated models such as O-GARCH or Factor GARCH models.
Similar conclusions are also reached if one uses the Gaussian innovations or
the SBC criteria.

7.4 VaR Diagnostic Test Results

For the individual and average models we recursively computed the VaR
thresholds, ρ̄t−1(ωt−1,α) for the equal weight ωt−1 = (1/22, 1/22, ..., 1/22)0,
assuming Gaussian and Student t distributed devolatized returns with 6 and 8
degrees of freedom and two different values of α, namely α = 1% and α = 5%.
Using these estimates we then computed, π̂, the percentage of times that the
VaR constraint were violated, and hence the VaR diagnostic statistic, zπ̂, de-
fined by (11). The results are summarized in Tables 3 for α = 1% (Panel A)
and α = 5% (Panel B), respectively. In view of the model selection results
discussed above the test outcomes are very similar, and in many instances
are identical for the AIC and SBC selection criteria. In contrast, choice of
the distribution of the devolatized returns appears important. For example,
the ‘best’ modelling strategy is rejected by the VaR test when the underlying
distribution is assumed to be Gaussian but not if the Student t is used.
Also in the present application there are no differences in the test results for

the average ‘Bayesian’ and the ‘best’ modelling strategies. As noted earlier,
this is due to the fact that for most periods in the evaluation sample the
‘best’ model happens to totally dominate all other models, and as a result the
average ‘Bayesian’ and the best models end up being the same for all practical
purposes. This result suggests that the potential risk diversification benefits
of Bayesian model averaging might be limited in financial applications where
the available time series samples are typically rather large.
Comparing across strategies, the best outcome is found with respect to

the thick modelling strategy when averaging across the best 15 models (top
25 percentile). The test results are quite robust with respect to the choice
of the conditional distribution of the innovations, although they deteriorate
as we move from the normal distribution towards Student t with 6 degrees of
freedom. This is in line with the theoretical result discussed in Section 6, where
it was shown that the average model will be more fat-tailed than the underlying
Gaussian or Student t models with the same average volatility. In cases where
the underlying models are already fat tailed, the model averaging (without
any single model dominating) can induce an excessive degree of fat-tailness.

13Notice that the model weights are obtained by exponentiation of the AIC-penalized
log-likelihood values and even seemingly small differences in the average fit of the models
can translate into major differences in model weights for sufficiently large sample sizes.
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As can be seen from the results in Tables 3, this tendency is accentuated as
the coverage of ‘thick’ modelling is increased, and is most acute when all the
63 models are included.

7.5 Statistical Diagnostic Test Results

The different modelling strategies can also be evaluated using purely statisti-
cal techniques. A statistical procedure, which is close to ours, focuses on the
probability density forecasts of a given portfolio return, ρt = ω0t−1rt, and con-
siders the probability integral transforms v̂it =

R ρt
−∞ f̂(x|Ft−1,Mi)dx, for t =

τ +1, ..., τ +T1, where f̂(x|Ft−1,Mi) is the estimated probability density of ρt
under model Mi and conditional on Ft−1. Making use of a well-known result
due to Rosenblatt (1952) it is now easily seen that the sequence {v̂it, t ∈ T1}
will be i.i.d. uniformly distributed on the interval [0, 1] if f̂(x |Ft−1,Mi ) co-
incides with the ‘true’ but unknown conditional predictive density of ρt. For
further discussions see Diebold, Gunther, and Tay (1998) and Diebold, Hahn,
and Tay (1999).
To test the hypothesis that v̂it are random draws from the uniform [0, 1] dis-

tribution, we consider the standard Kolmogorov-Smirnov testKS = max1≤j≤T1

¯̄̄
j
T1
− v̂∗j

¯̄̄
as well as the Kuiper test Ku = max1≤j≤T1(

j
T1
− v̂∗j ) + max1≤j≤T1(v̂

∗
j − j

T1
),

where v̂∗1 ≤ v̂∗2 ≤ ... ≤ v̂∗T1 represent the ordered values of the v̂iτ+1, ..., v̂iτ+T1.
The Kuiper test has the added advantage of placing greater emphasis on the
tail behavior of the distribution.
Table 4 reports the p-values of these tests, computed using the analytic

approximations provided in Stephens (1970), for the three modelling strate-
gies. The test results for the ‘best’ and the ‘average’ modelling strategies are
identical, for the same reasons as noted above, and indicate a mild rejection
(at 7 to 9 per cent levels) of the models with Gaussian de-volatilized returns if
the Kuiper test is used. However, the test results strongly favor the Student
t distribution with 8 degrees of freedom, in particular. None of the specifica-
tions are rejected by the KS test. The Student t distribution is favored when
considering the ‘thick’ modelling approach which includes the best 15 models
but tend to be rejected when the average include a larger number of models.
The opposite is observed with respect to the normal distribution.
Overall, the statistical tests support the main conclusions reached using

the VaR based diagnostics, although they appear to be less informative and
less clear cut as far as the tail properties of the portfolio return distributions
are concerned.

8 Summary and Conclusions
The paper considers the problem of model uncertainty in the context of multi-
variate volatility models and notes that it is particularly important given the
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highly restrictive nature of these models that are used in practice. To deal
with model uncertainty we advocate the use of model averaging techniques
where an ‘average’ model is constructed by combining the predictive densities
of the models under consideration, using a set of weights that reflect the mod-
els’ relative in-sample performance. We consider ‘thick’ modelling as well as
(approximate) Bayesian modelling frameworks.
Second, the paper proposes a simple decision-based model evaluation tech-

nique that compares the volatility models in terms of their Value-at-Risk per-
formance. The proposed test is applicable to individual as well as to average
models, and can be used in a variety of contexts. Under mild regularity condi-
tions, the test is shown to have a Binomial distribution when evaluation sample
(T1) is finite and T0 (the estimation sample) is sufficiently large. The proposed
test converges to a standard Normal variate provided T1/T0+1/T1 → 0, a con-
dition also encountered in forecast evaluation literature that uses root mean
square error as evaluation criteria, as discussed in West (1996). The proposed
VaR test is also invariant to the portfolio weights and is shown to be consis-
tent under departures from the null hypothesis. The Binomial version of the
VaR test could have important applications in credit risk literature where the
evaluation samples are typically short.
In the empirical application we experimented with AIC and SBC weights

and found that, due to the large sample sizes available, they led to very similar
results with the selected models often totally dominating the rest. The model
most often selected by both criteria turned out to be the Asymmetric Dynamic
Conditional Correlation (ADCC) model of Cappiello, Engle and Sheppard
(2002). In the out of sample evaluation tests, only the multivariate Student
t version of the ADCC model with 8 degrees of freedom managed to pass
the VaR diagnostic tests. Interesting enough, the simplest of all data filters
used in this paper, namely the Equal Weighted Moving Average filter also
performed well; doing better than other data filters as well as the remaining
estimated models, namely O-GARCH and Factor GARCH specifications.
Finally, while model averaging provides a useful alternative to the two-step

model selection strategy, it is nevertheless subject to its own form of uncer-
tainty, namely the choice of the space of models to be considered and their
respective weights. It is therefore important that applications of model aver-
aging techniques are investigated for their robustness to such choices. In the
case of our application it is clearly desirable that other forms of multivariate
volatility models are also considered, which could be the subject of future
research.
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Appendix: Mathematical Proofs

Proof of Theorem 1. As T0 →∞, π̂i →p πi =
1
T1

P
t∈T1 dit, dit = I (−ρt − cit(α)σρt(Mi)).

Consider now the moments of T1πi and note that for any integer n ≥ 1,

E (T1πi)
n =

X
t1,t2,...,tn∈T1

{E (dit1dit2 ...ditn)} . (A.1)

However, for any δ > 0 we have E(dδit | Ft−1,Mi) = α, or unconditionally E(dδit |Mi) = α.
Hence, all the terms E (dit1dit2 ...ditn) in (A.1) coincide with the case when the ditj , j =

1, .., n, are i.i.d Bernoulli distributed random variables with parameter α, for any choice of
t1, ..., tn. Also, since T1 < ∞, the support of the distribution of T1πi is bounded and as a
consequence its moment generating function exists and is the same as that of a Binomial

distribution with parameters T1 and α. Therefore, by method of moments (see Billingsley
(1986, Theorem 30.1)), T1πi will also have a Binomial distribution. ¥

Proof of Theorem 2. Assume Hi0 defined by (10) holds. Set qit = qit(θ̂iT0 ,θi0) =
(σ̂ρ t(Mi)/σρt(Mi)) = (ω0t−1Σ̂itωt−1/ω0t−1Σitωt−1)1/2. ThenE[dit(θ̂iT0)|Ft−1,Mi] = Fit(−cit(α)qit)
and E[π̂i|Mi] =

1
T1

P
t∈T1 E{Fit(−cit(α)qit)}. As T0 →∞, θ̂iT0

p→ θi0 and since Σit(θi) is

a continuous function of θi it also follows that qit(θ̂iT0 ,θi0)
p→ 1, for all values of t ∈ T1.

Hence, for any given finite evaluation sample size, T1, and as T0 → ∞, E (π̂i|Mi) =
1
T1

P
t∈T1 E{Fit(−cit(α)qit)}

p→ Fit(−cit(α)) = α. Consider now the statistic
√
T1(π̂i − α)

and write it as p
T1(π̂i − α) =

p
T1(πi − α) +

p
T1(π̂i − πi), (A.2)

where πi = 1
T1

P
t∈T1 dit(θi0). Also note that

√
T1(π̂i − πi) =

p
T1/T0(

P
t∈T1 Xit,T0/T1),

where Xit,T0 =
√
T0[dit(θ̂iT0)− dit(θi0)]. But it is easily seen that,

|Xit,T0 | =
½ √

T0 if (ρt + cit(α)σ̂ρt(Mi))(ρt + cit(α)σρ t(Mi)) < 0,
0 otherwise.

Hence, for all t ∈ T1, Pr
¡
|Xit,T0 | =

√
T0 |Ft−1,Mi

¢
≤ |Fit(−cit(α)qit(θ̂iT0 ,θi0))−Fit(−cit(α))|,

and consequently E(|Xit,T0 | |Ft−1,Mi) ≤
√
T0|Fit(−cit(α)qit(θ̂iT0 ,θi0)) − Fit(−cit(α))|.

Using the mean-value expansion of Fit(−cit(α)qit(θ̂iT0 ,θi0)) around θ̂iT0 one gets Fit(−cit(α)qit(θ̂iT0 ,θi0)) =
Fit(−cit(α)) − cit(α)fit(−cit(α)qit(θ̄i,θi0))∂qit(θ̄i,θi0)/∂θ̂

0
iT0(θ̂iT0 − θi0), where the ele-

ments of θ̄i are convex combinations of the corresponding elements of θ̂iT0 and θi0. By the

Holder’s inequality for norm of matrices, since k ωt k> 0, we have E(|Xit,T0 | |Ft−1,Mi)

≤ cit(α)fit(−cit(α)qit(θ̄i,θi0)) k∂qit(θ̄i, θi0)/∂θ̂iT0 k
√
T0 k θ̂iT0−θi0 k≤ cit(α)fit(−cit(α)qit(θ̄i,θi0))

{supθ∈Θi k ∂λ̄it(θ)/∂θ k /λ
1
2
it(θ)λ

1
2
it(θ0)}

√
T0 k θ̂iT0 − θi0 k. Taking the unconditional mean

and using the Holder inequality again yields E(|Xit,T0 ||Mi)

≤ cit(α) supx fit(x)(E| supθ∈Θi k ∂λ̄it(θ)/∂θ k /λ
1
2
it(θ)λ

1
2
it(θ0)|δ)

1
δ

√
T0(Ek θ̂iT0 − θi0 k

δ
δ−1

)1−1/δ. Therefore, T−11
P

t∈T1 Xit,T0 = Op(1) and the second term in (A.2) vanishes as
T1/T0 + 1/T1 → 0. Hence

√
T1(π̂i − α) −

√
T1(πi − α) = op(1), where

√
T1(πi − α) =

1√
T1

P
t∈T1 git, git = I (−ρt − cit(α)σρt(Mi)) − α. Therefore, it remains to establish the

asymptotic distribution of
√
T1(πi − α). This easily follows by the martingale central limit

theorem of Brown (1971, Theorem 2) since the git are a bounded, martingale difference

sequence with the constant variance α(1− α).¥

Proof of Theorem 3: Inequality (18) can be expressed as
PN

i=1 λig(bi) > g(
PN

i=1 λibi),
for the function g(x) ≡ F (a/

√
x). Jensens’s inequality ensures that the latter inequality
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is satisfied whenever g(·) is strictly convex. Since g(·) is twice differentiable by construc-
tion, we just need to check the conditions such that the second derivative of g(x) satisfies

g00(x) > 0. Straightforward calculations yield the required condition (17).¥
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Table 1: Summary statistics

Sector Mean St.Dev. Skewness Kurtosis Ljung-Box(20)

EN 0.031 1.386 0.049 5.435 40.3
MA 0.015 1.367 0.141 6.347 22.1
IC 0.040 1.395 -0.156 6.784 33.1
CS 0.022 1.318 -0.466 8.777 18.7
TRN 0.027 1.407 -0.501 10.644 28.4
AU 0.011 1.628 -0.172 7.017 36.3
LP 0.015 1.194 -0.099 6.750 25.1
HR 0.034 1.422 -0.393 9.241 16.4
ME 0.030 1.660 -0.056 8.168 37.2
MS 0.057 1.739 0.017 6.120 48.5
FD 0.028 1.328 -0.217 6.597 30.8
FBT 0.032 1.132 0.008 6.312 32.4
HHPE 0.042 1.445 -1.581 30.256 55.1
HC 0.039 1.274 -0.295 7.008 57.4
PHB 0.054 1.472 -0.172 5.821 53.1
BK 0.051 1.590 0.045 5.324 37.0
DF 0.075 1.840 0.036 5.013 47.4
INSC 0.044 1.549 0.415 11.045 38.8
IS 0.062 2.246 0.060 5.019 32.6
TEHW 0.043 2.393 0.165 5.719 30.6
TS 0.000 1.605 -0.072 5.969 22.7
UL 0.005 1.197 -0.363 9.881 25.8

Note: Columns 2 to 4 report the sample mean, standard deviation,
skewness and kurtosis. Column 5 reports the Ljung-Box statistic of
order 20 for testing autocorrelations in individual asset returns.
The critical value of χ220 at the 1% significance level is 37.56.
The sample period is January 2, 1995 to October 13, 2003.
Column 1 gives the Industry codes taken from REUTERS for the S&P 500
industry groups according to the Global Industry Classification
Standard: EN for Energy, MA for Materials, IC for Capital Goods,
CS for Commercial Services & Supplies,TRN for Transportation,
AU for Automobiles & Components,LP for Consumer Durables & Apparel,
HR for Hotels, Restaurants & Leisure, ME for Media, MS for Retailing,
FD for Food & Staples Retailing, FBT for Food, Beverage & Tobacco,
HHPE for Household& Personal Products, HC for Health Care ,
Equipment & Services, PHB for Pharmaceuticals & Biotechnology,
BK for Banks, DF for Diversified Financials, INSC for Insurance,
IS for Software & Services, TEHW for Technology Hardware & Equipment,
TS for Telecommunication Services, UL for Utilities.
Source: Datastream.
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Table 2: AIC-penalized Quasi log-likelihood values

Model Type 2 Nov’01 13 Oct’03 Average Model Type 2 Nov’01 13 Oct’03 Average

EQMA (n0)
(50) -52921 -69477 -61666 DCC (p, q, r, s)
(75) -50167 -65931 -58500 (1,1,1,1) -47851 -61964 -55310

(125) -48815 -64185 -56943 (2,1,1,1) -47849 -61998 -55326

(250) -48096 -63437 -56182 (1,2,1,1) -47843 -61895 -55272

(2,2,1,1) -47876 -62044 -55371

EWMA (λ0, ν0)
(0.96,0.94) -53681 -70350 -62493 ADCC (p, q, r, s)
(0.96,0.80) -87212 -114517 -101336 (1,1,1,1) -48126 -61856 -55356

(0.96,0.60) -167254 -220654 -194364 (2,1,1,1) -48199 -62141 -55521

(0.95,0.94) -53696 -70367 -62505 (1,2,1,1) -48099 -61737 -55282

(0.95,0.80) -87180 -114515 -101309 (2,2,1,1) -48194 -62018 -55462

(0.95,0.60) -167207 -220659 -194334

(0.94,0.94) -53726 -70406 -62537 CCC (p, q)
(0.94,0.80) -87142 -114495 -101274 (1,1) -48299 -62847 -55980

(0.94,0.60) -167143 -220626 -194279 (2,1) -48298 -62881 -55997

(0.95,0.95) -52279 -68510 -60868 (1,2) -48293 -62780 -55944

(0.96,0.96) -50970 -66802 -59361 (2,2) -48069 -62698 -55785

MMA (n0, ν0) O-GARCH (p, q, r, s)
(50,0.60) -169511 -221486 -195659 (1,1,1,1) -47899 -66423 -57518

(75,0.60) -169503 -221370 -195615 (2,1,1,1) -47926 -66529 -57670

(125,0.60) -169533 -221210 -195607 (1,2,1,1) -47909 -66818 -57588

(250,0.60) -169754 -221114 -195832 (2,2,1,1) -47703 -66180 -57271

(50,0.80) -90156 -116706 -103702

(75,0.80) -90089 -116523 -103586 Factor HRS (p, q, r, s)
(125,0.80) -90130 -116411 -103591 (1,1,1,1) -50625 -66506 -59004

(250,0.60) -90317 -116311 -103764 (2,1,1,1) -50119 -65747 -58411

(50,0.94) -58962 -76663 -68266 (1,2,1,1) -50102 -65698 -58382

(75,0.94) -57016 -74134 -66038 (2,2,1,1) -50116 -65733 -58403

(125,0.94) -56667 -73624 -65604

(250,0.94) -58962 -76663 -68266 Factor DP (p, q, r, s)
(1,1,1,1) -50180 -65722 -58445

Gen. EWMA (p, q, ν0) (2,1,1,1) -50207 -65759 -58479

(2,2,0.94) -53821 -63768 -59212 (1,2,1,1) -50183 -65726 -58449

(2,2,0.80) -86819 -94612 -91299 (2,2,1,1) -50190 -65735 -58457

(2,2,0.60) -167006 -202297 -185255

(1,2,0.94) -53767 -63550 -59072

(1,2,0.80) -86705 -93863 -90911

(1,2,0.60) -166798 -201250 -184666

(2,1,0.94) -53751 -63638 -59108

(2,1,0.80) -86708 -94096 -91028

(2,1,0.60) -166863 -201696 -184932

(1,1,0.94) -53773 -63607 -59102

(1,1,0.80) -86782 -94010 -91036

(1,1,0.60) -166953 -201546 -184936

Note: The figures report the maximized values of the Student t (8) log likelihoods, penalized by the AIC criterion: AICi,t−1= LLi,t−1−ki,
where LLt−1,i is the maximized log likelihood at time t for model i and ki is the number of estimated parameters of model i.
Columns 2 and 6 report the AIC-penalized log likelihood at the initial date of the evaluation period (2 Nov ’01), columns 3 and 7
report the AIC-penalized log likelihood at the final date of the evaluation period (13 Oct ’03), and columns 4 and 8 report the average
AIC-penalized log likelihood values over the days between these two dates.For a brief description of the models see Section 3.
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Table 3: VaR Diagnostic Tests
Recursive estimation with expanding window for an equal-weighted portfolio

Panel A: α = 1%

Normal Student (8) Student (6)
π̂ zπ̂ π̂ zπ̂ π̂ zπ̂

Modelling Strategies
Best
AIC 1.972 2.200 0.592 -0.924 0.394 -1.370
SBC 1.972 2.200 0.592 -0.924 0.197 -1.817

‘Bayesian’ Average
AIC 1.972 2.200 0.592 -0.924 0.394 -1.370
SBC 1.972 2.200 0.592 -0.924 0.197 -1.817

Thick Average
AIC best 15 (25%) 0.394 -1.370 0.197 -1.817 0 -2.263
SBC best 15 (25%) 0.394 -1.370 0.197 -1.817 0 -2.263

AIC best 32 (50%) 0.592 -0.924 0.197 -1.817 0 -2.263
SBC best 32 (50%) 0.592 -0.924 0.197 -1.817 0 -2.263

All (100%) 0.197 -1.817 0 -2.263 0 -2.263

Panel B : α = 5%

Normal Student (8) Student (6)
π̂ zπ̂ π̂ zπ̂ π̂ zπ̂

Modelling Strategies
Best Models
AIC 7.100 2.170 4.733 -0.275 3.550 -1.497
SBC 6.903 1.966 4.733 -0.275 3.353 -1.701

‘Bayesian’ Average Models
AIC 7.100 2.170 4.733 -0.275 3.550 -1.497
SBC 6.903 1.966 4.733 -0.275 3.353 -1.701

Thick Average Models
AIC best 15 (25%) 4.536 -0.478 4.142 -0.886 3.155 -1.905
SBC best 15 (25%) 4.536 -0.478 4.142 -0.886 2.958 -2.109

AIC best 32 (50%) 4.733 -0.275 2.761 -2.312 2.169 -2.924
SBC best 32 (50%) 4.733 -0.275 2.761 -2.312 2.169 -2.924

All (100%) 3.155 -1.905 1.577 -3.535 1.577 -3.535
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Table 4: Probability Values for Kupier and Kolmogorov-Smirnov Tests
(Recursive wstimation with expanding window applied to an equal-weighted portfolio)

Normal Student (8) Student (6)
Modelling Strategy Ku KS Ku KS Ku KS

Best
AIC 0.091 0.158 0.485 0.303 0.179 0.174
SBC 0.091 0.181 0.362 0.247 0.292 0.279

‘Bayesian’ Average
AIC 0.091 0.158 0.485 0.303 0.179 0.174
SBC 0.091 0.181 0.362 0.247 0.292 0.279

Thick Average
AIC (25%) 0.003 0.004 0.154 0.187 0.052 0.107
SBC (25%) 0.003 0.004 0.148 0.163 0.025 0.080

AIC (50%) 0.143 0.066 0.005 0.003 0.000 0.016
SBC (50%) 0.143 0.066 0.006 0.003 0.000 0.016

All (100%) 0.016 0.049 0.000 0.002 0.000 0.014

Note: The columns indicated by KS report the p-values of the Kolmogorov-Smirnov
test and the columns indicated by Ku reports the p-values of the Kupier test (cf. Section 7.5).
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