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ABSTRACT 

Interpolation and Backdating with A Large Information Set* 

Existing methods for data interpolation or backdating are either univariate or 
based on a very limited number of series, due to data and computing 
constraints that were binding until the recent past. Nowadays large datasets 
are readily available, and models with hundreds of parameters are fastly 
estimated. We model these large datasets with a factor model, and develop 
an interpolation method that exploits the estimated factors as an efficient 
summary of all the available information. The method is compared with 
existing standard approaches from a theoretical point of view, by means of 
Monte Carlo simulations, and also when applied to actual macroeconomic 
series. The results indicate that our method is more robust to model 
misspecification, although traditional multivariate methods also work well while 
univariate approaches are systematically outperformed. When interpolated 
series are subsequently used in econometric analyses, biases can emerge, 
depending on the type of interpolation but again be reduced with multivariate 
approaches, including factor-based ones. 
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1 Introduction

Issues of estimation of disaggregate data (e.g. monthly values from quarterly
values), missing observations, and outliers received considerable attention in
the literature. A Þrst, simple, approach to recovering the disaggregated val-
ues is based on partial weighted averages of the aggregated ones, see e.g.
Lisman and Sandee (1964). In a more sophisticated method, the disaggre-
gated values are those which minimise a loss function under a compatibility
constraint with aggregated data, see e.g. Boot et al. (1967), Cohen et al.
(1971), Stram and Wei (1986). A further constraint can be added, the exis-
tence of a preliminary disaggregated series, so that the issue becomes how
to best revise it in order for it to be compatible with the aggregated data,
see e.g. Denton (1971), Chow and Lin (1971), Fernandez (1981), and Litter-
man (1983). The problem is somewhat simpliÞed by assuming an ARIMA
process at the disaggregate level, see e.g. Wei and Stram (1990) and Guer-
rero (1990). As far as the literature on missing observations and outliers is
concerned, a selected list of references includes Harvey and Pierse (1984),
Kohn and Ansley (1986), Nijman and Palm (1986), and Gomez and Maravall
(1994).

All these methods, reviewed in Marcellino (1998), are univariate or only
focus on a small number of series, while a large amount of information
is now readily available in the form of datasets with many variables for
a considerable time span. The main statistical problem is to Þnd a proper
representation for these large datasets, but recent developments in the factor
analysis literature provide a solution. Standard factor models are not suited
for applications with economic variables, since they require both the factors
and the errors to be uncorrelated over time, and the errors to be orthogonal
to each other. The latter hypothesis is relaxed in the static approximate
factor model, see e.g. Chamberlain and Rothschild (1983), Connor and
Korajczyk (1986, 1993). In the dynamic factor model the factors and the
errors are also allowed to be correlated in time, see Stock and Watson (1998)
and Forni, Hallin, Lippi and Reichlin (2000) for, respectively, a time domain
and a frequency domain approach. The dynamic factor model has been
shown to provide a proper representation for large dataset of macroeconomic
variables, and in particular for forecasting, which can be considered as a
problem of missing observations at the end of the series, see e.g. Stock
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and Watson (1998) for the US, Marcellino, Stock and Watson (2001) and
Angelini, Henry and Mestre (2001) for the Euro area, Artis, Banerjee and
Marcellino (2001) for the UK. This suggests that similar methods could also
be used to back-cast or backdate series for which information on the past is
missing.

In this paper we develop a dynamic factor based approach to data in-
terpolation and series backdating, compare it with existing methods from a
theoretical point of view and by means of Monte Carlo simulations, and ap-
ply it to macroeconomic variables. More speciÞcally, in section 2 we present
the statistical framework. In section 3 we develop the factor based estima-
tors, and compare them with competing methods from a theoretical point
of view. In section 4 we evaluate the relative merits of the methods by
means of simulation experiments. In section 5 we apply the methods to
some macroeconomic variables. In section 6 we evaluate the consequences
of using the interpolated / backdated data in subsequent analyses. Finally,
in section 7 we summarize the main Þndings of the paper and conclude.

2 The Framework

We assume that the �× 1 vector of weakly stationary time series �� admits
the factor representation

��
�×1

= Λ
�×�

��
�×1

+ ��
�×1
� (1)

where �, the number of factors, is substantially smaller than �, namely, a
few common forces drive the joint evolution of all the variables. Precise
conditions on the factors, ��, and the idiosyncratic errors, ��, can be found
in Stock and Watson (1998).
��� is a univariate series that can be also described by a factor structure

��� = �
0�� + 	�
 (2)

Yet, not all values of ��� can be observed. In particular, observed values can
be thought of as realizations of the process � = {��}∞�=1 = {�(�)����}∞�=1,
where 
 indicates the aggregate temporal frequency (e.g. quarters), � the
frequency of aggregation (e.g. 3 if � is measured in months), � is the lag
operator, and �(�) = �0+�1�+


+��−1��−1 characterizes the aggregation
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scheme. For example, �(�) = 1+�+ 


+��−1 in the case of ßow variables
and �(�) = 1 for stock variables.

If we stack the observations on��� �
�
� , and �� in X

��×1
, Y�

�×1
and Y

�×1, where

� is the number of aggregate observations, and construct the aggregator
matrixW with

W
(�+�� )×(�+1)�

=

 W
�×�

0
�×��

0
��×�

I
��×��

 �

W
�×�

=


�0� �1� 


� ��−1 0� 0� 


� 0 


 0� 0� 


� 0

0� 0� 


� 0 �0� �1� 


� ��−1 


 0� 0� 


� 0






0� 0� 


� 0 0� 0� 


� 0 �0� �1� 


� ��−1

 �
then Z =WZ�, where Z� = (Y�0 : X0)0 and Z = (Y0 : X0)0. The identity
matrix inW can be substituted by a matrix likeW if some elements of ��

are also not observable.
We want to estimate the values of Y� given those of Z. We measure

the expected loss by the mean squared disaggregation error (MSDE), and
formulate the problem as:

mineZ ��
³
�(Z� − eZ)(Z� − eZ)0´ s.t. Z =WZ�
 (3)

Different weights can be assigned to different errors and cross errors can be
taken into account by inserting a symmetric positive semideÞnite matrix,
Q, into the objective function, thus reformulating the problem as:

mineZ ��
³
�(Z� − eZ)Q(Z� − eZ)0´ s.t. Z =WZ�
 (4)

Using the Choleski decomposition Q = PP0 and deÞning R� = Z�P−1,
R = ZP−1, eR = eZP−1, (4) can be written as (3), after substituting Z with
R. Hence, we stick to the formulation in (3) for the objective function to
be minimized.

3 Estimators and Optimality Results

For the moment we do not assume the factor representation in (1) and (2),
but only that second moments of Z� exist, and its covariance matrix is
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denoted by

VZ�

(�+1)�×(�+1)�
=

 VY�

�×�
CY�X
�×��

CXY�

��×�
VX

��×��

 

This assumption implies the existence of second moments of Z, the observed
aggregated variables, whose covariance matrix is

VZ =WVZ�W
0



Within this general framework, Proposition 1 characterizes the optimal es-
timator.

Proposition 1 The (linear) minimum MSDE estimator is:bZ = VZ�W
0
V−1
Z Z�

with
�(Z� − bZ)(Z� − bZ)0 =VZ� −VZ�W

0
V−1Z WVZ�


Proof. Consider a general linear estimator PZ = PWZ
�
. The objective

function can then be written as

��
¡
�(I−PW)Z�Z�0(I−PW)0

¢
= ��

¡
(I−PW)VZ�(I−PW)0

¢



The optimal projection matrix bP is given by the Þrst order conditions
−VZ�W

0
+ bPWVZW

0
= 0


The second order conditions are satisÞed for this choice of P, given that
WVZ�W

0
is a positive deÞnite matrix. Thus, the linear minimum MSDE

estimator is bZ = bPZ = VZ�W
0
V−1Z Z


Moreover,

�(Z� − bZ)(Z� − bZ)0 = �(Z� − bPWZ�)(Z� − bPWZ�)0

= �
³
(I− bPW)Z�Z�0(I− bPW)0

´
= (I− bPW)VZ�(I− bPW)0

= ((I− bPW)VZ�)0 − ((I− bPW)VZ�W
0bP0)0

= (VZ� −VZ�W
0
VZWVZ�)0

= VZ� −VZ�W
0
VZWVZ�
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Useful insights can be gained by expanding the formula of the optimal
predictor as

bZ = Ã bYbX
!
=

 α
�×�

β
�×��

γ
��×�

δ
��×��

Ã Y

X

!
� (5)

where

α = (VY� −CY�XV
−1
X CXY�)W

0 h
W(VY� −CY�XV

−1
X CXY�)W

0i−1
�

β =
h
I−VY�W

0
(WVY�W

0
)−1W

i
CY�X

h
VX −CXY�W

0
(WVY�W

0
)−1WCY�X

i−1
�

γ = 0�

δ = I


Clearly, the optimal predictor of X is X itself. The matrices α and β can
instead be interpreted as the coefficients of Y and X in a linear projection
of Y� on Y and X. In an obvious notation, we have

α = VY�|XW
0
V−1
Y|X �

β = VY�|YW0V−1X|Y 


We will refer to bZ as the joint estimator.
One problem with the joint estimator is that when the dimension of ��

is large, the number of parameters to be estimated is prohibitively large
and renders the procedure impossible to implement in practice. This prob-
lem can be resolved by imposing sufficient restrictions on the parameters,
and the factor representation allows to achieve this goal. Given the factor
structure in (1), �� can be decomposed into a common and an idiosyncratic
component, Λ�� and ��, respectively. Stacking �� and �� into F and e, we
have,

Proposition 2 If cov(Y�� e | Y�F) = 0, the optimal estimator is given by:

bZ	 =

Ã
α	 β	

γ	 δ	

!Ã
Y

F

!
� (6)
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where the dimension of the matrices are as in Proposition 1 but with n=p.
In particular,

α	 = (VY� −C
 �	V
−1
	 C	
 �)W

0 h
W(VY� −C
 �	V

−1
	 C	
 �)W

0i−1
�

β	 =
h
I−VY�W

0
(WV
 �W

0
)−1W

i
C
 �	

h
V	 −C	
 �W

0
(WV
 �W

0
)−1WC
 �	

i−1
�

γ	 = 0�

δ	 = I


Moreover, bZ	 is more efficient than the joint estimator bZ:
�(Z�

	 − bZ	 )(Z
�
	 − bZ	 )

0
= V��

�
−VZ�

�
R
0
V−1
Z�
RVZ�

�
�

where Z�
	 = (Y

�0 : F
0
)
0
, Z	 = (Y

0
: F

0
)
0
and R is constructed as W but

with n=p.

Proof. When, cov(Y��e | Y�F) = 0, the weights in the optimal estimator of
Y� coincide with those of a projection of Y� on Y and F. In this projection
the coefficient of e is restricted to be zero, which yields the increase in
efficiency with respect to bZ.

In this case all the relevant information is summarized by the factors.
We call bZ	 the factor estimator.

If �0 = 0 in (2), so that the factors are uncorrelated withY�, an estimator
that only exploits the information in the observed data will be more efficient.
This is formally stated in the following proposition.

Proposition 3 If cov(Y��X | Y) = 0, the optimal estimator is given by:

bZ� =

Ã bY�bX�

!
=

Ã
α� β�

γ� δ�

!Ã
Y

X

!
� (7)

where the dimension of the matrices are as in Proposition 1. In particular,

α� = VY�W
0
V−1
Y �

β� = 0�

γ� = 0�

δ� = I
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Moreover, bZ� is more efficient than the joint estimator bZ, and it is
�(Y� − bY� )(Y

� − bY� )
0
= VY� −VY�W

0
V−1Y WVY�


Proof. When, ���(Y��X | Y) = 0, the weights in the optimal estimator of
Y� coincide with those of a projection of Y� on Y only. In this projection
the coefficient of X is restricted to be zero, which yields the increase in
efficiency with respect to bZ.bZ� will be called the univariate estimator. It is well known and often
adopted in the literature, see e.g. Marcellino (1998).

Next, a conditional estimator is deÞned in

Proposition 4 The estimator that solves the problem

min ��
³
�(Z� − eZ)(Z� − eZ)0 | CY�XVXX

´
�
�
 Z =WZ�
 (8)

is: bZ
 =

Ã
α
 β


γ
 δ


!Ã
Y

X

!
� (9)

where the dimension of the matrices are as in Proposition 1. In particular,

α
 = (VY� −CY�XV
−1
X CXY�)W

0 h
W(VY� −CY�XV

−1
X CXY�)W

0i−1
�

β
 = [I−α
 ]CY�XVX�

γ
 = 0�

δ
 = I


Moreover, if cov(Y�X) = 0� bZ
 = bZ

Proof. DeÞne

e� = Y� −CY�XVXXb� = b� −CY�XVXXe� = Y −WCY�XVXX
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The problem can then be reformulated as

minb� ��(�(e� − b�)(e� − b�)0 |CY�XVXX) �
�
 e� =We�
 (10)

From Proposition 1, the solution is

b�∗ = ���� −1�
e�


Substituting back the expressions for b� and e�, yields the formula in (9).
Under the additional condition ���(Y�X) =��
 � = 0, it is

�
 = VY�W
0
� −1� = �;

�
 = CY�XVX = �


We call bZ
 the conditional estimator. Notice that bY
 is a convex com-
bination of Y and X, where the weight on Y is equal to that in bY in the
joint estimator bZ, but the weight on X is different, unless Y and X are
uncorrelated. In terms of projections, it is useful to derive bY
 in two steps.
In the Þrst step Y� is projected on X. In the second step, the residuals
form the Þrst step are projected on their aggregated counterpart. If Y and
X are uncorrelated, this procedure is equivalent to projecting Y� on Y and
X, which generates bY. Otherwise, the results will be different, as shown in
(5) and (9).

The formula in (9) can be extended to the case where a generic pre-
liminary estimator is available, Y�

�, but it does not satisfy the aggregation
constraint Y =WY�

�. In this case the problem is

mineZ ��
³
�(Z� − eZ)(Z� − eZ)0 | Y�

�

´
�
�
 Z =WZ�� (11)

and it can be easily shown that the optimal estimator of Y� is

bY� = Y
�
� +VY�W

0
V−1Y (Y −WY�

�)
 (12)

We refer to bY� as to the preliminary estimator. bY� boils down to the
conditional estimator bY
 when Y�

� = CY�XVXX. Chow and Lin�s (1971)
estimator belongs to this class. In their case Y�

� = bγ���X, and bγ��� is
Þrst obtained from a GLS regression of observed aggregated �� on ��. As a
consequence, this estimator will be in general inefficient with respect to the
joint estimator bY in (5).
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More generally, when the restrictions that lead to bY	 , bY� , and bY


are not satisÞed, the resulting estimators will be less efficient than bY. We
quantify the loss of efficiency in the next proposition, but some additional
notation has to be introduced Þrst. DeÞne,

A
(�+1)�×� (�+1)

=


I� 0 0 


 0

0 �11I� �12I� 


 �1�I�





0 ��1I� ��2I� 


 ���I�

 � ε
(�+1)�×1

=

 0
�×1
e

��×1

 �
where ��� is the (�� �)th element in the factor loading matrix Λ in equation
(1). Thus, Z� = AZ�

	 +ε. Also, let a = (α : β), a	 = (α	 : β	 ), a� = (α :
0), a
 = (α
 : β
), Σ = �(Y

�− bY)(Y�− bY)0 , Σ� = �(Y�− bY�)(Y�− bY�)
0
,

� = �����. Then,

Proposition 5 If cov(Y��e | Y�F) 6= 0, cov(Y��X | Y) 6= 0� cov(Y�X) 6=
0, we have

Σ	 −Σ = (aA− a	 )VZ�
(aA− a	 )0 + (aA− a	 )CZ� ε +CεZ�

(aA− a	 )0 +Vε�
Σ� −Σ = (a− a� )VZ�(a− a� )0�
Σ
 −Σ = (a− a
)VZ�(a− a
)0 


Proof. By deÞnition,

Σ	 = �(Y� − bY	 )(Y
� − bY	 )

0

= �(Y� − bY + bY − bY	 )(Y
� − bY+ bY − bY	 )

0

= �(Y� − bY)(Y� − bY)0 +�(aZ� − a	Z�
	 )(aZ

� − a	Z�
	 )

0
�

where the second equality follows from the lack of correlation betweenY�− bY
and bY − bY	 because of the optimality of bY. The proof proceeds along the
same line for the other estimators.

Table 1 summarizes the estimators.
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4 Simulation Experiments

In this section we evaluate the relative performance of the alternative disag-
gregation methods by means of simulation experiments. In particular, with
reference to Table 1, we consider two types of factor estimators, two types
of univariate estimators, and a conditional/preliminary estimator, while we
do not analyze the joint estimator because it is not applicable with a large
information set. In the Þrst subsection we provide additional details on
these estimators. In the second subsection we describe the design of the
experiments. In the Þnal subsection we discuss the results.

4.1 Practical Implementation

The practical implementation of the estimators described in the previous
section is complicated by two main issues. First of all, in general the vari-
ance covariance matrix at the disaggregate level, VZ� is not known and
has to be derived from its aggregate counterpart, VZ. This raises a serious
identiÞcation problem, because several VZ� are compatible with VZ, in the
sense that they satisfy the constraintVZ =WVZ�W. Such an issue is often
overlooked and it is usual to assume that VZ� is known. Marcellino (1998)
discusses in more detailes the identiÞcation problem when the disaggregated
generating mechanism belongs to the ARMA class.

The second issue is estimation of the aggregate variance-covariance ma-
trix, VZ or ��. Without making any parametric assumptions on the gen-
erating mechanism of the process, estimation of the high order lags of the
autocovariance function is highly imprecise in Þnite samples. Moreover, sev-
eral elements in these matrices are likely very small or close to zero, which
creates an additional problem for the computation of the inverse of the ma-
trices, and for the numerical accuracy of the procedure. Also in this case,
assuming a disaggregate ARMA generating mechanism can be helpful.

To take into consideration these two issues, we will experiment with the
following estimators.

For the univariate estimator, we assume an AR(3) model at the disaggre-
gate level, and compute the optimal estimator of the missing observations
using the Kalman Þlter, and the smoother, according to the formulae in
Harvey and Pierse (1984), see also Kohn and Ansley (1986), Nijman and
Palm (1986), and Gomez and Maravall (1994).
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As an alternative univariate estimator that does not require assumptions
on the dissagregate generating mechanism, we use spline functions, see e.g.
Micula and Micula (1998). The tension factor, which indicates the curviness
of the resulting function is set equal to one. Values close to zero would imply
that the curve is approximately the tensor product of cubic splines, while if
the tension factor is large the resulting curve is approximately bi-linear.

To construct a conditional estimator, we use the Chow and Lin (1971)
procedure, allowing for an AR(1) structure in the errors of the regression.
Five variables are included as regressors, and they are selected among the
set of available variables on the basis of their correlation at the aggregate
level with the variable to be disaggregated.

Next, we consider two types of factor based estimators. One is based
on factors estimated from a balanced panel, i.e., without using information
from the variable to be disaggregated. This boils down to applying the
Chow and Lin (1971) procedure using (three) estimated factors as regres-
sors rather than some selected variables. The second factor based estimator
uses factors extracted from an unbalanced panel, using an EM algorith de-
veloped by Stock and Watson (1998). Basically, the disaggregated variable
obtained by the Þrst factor method is added to the balanced panel, factors
are re-extracted, the Chow and Lin (1971) procedure is applied with the new
factors, a new set of disaggregated values are obtained, and they are used to
construct another balanced panel, another set of factors, etc. The procedure
is repeated until the estimates of the factors do not change substantially in
successive iterations. If the Þt of the Chow and Lin (1971) regression in the
second step is lower than that in the Þrst step, the procedure is stopped
and the balanced factor based estimator is used. Following the same line of
reasoning as in Stock and Watson (1998) in a forecasting context, the fact
that the estimated rather than the true factors are used in the procedure
does not affect the quality of the Þt of the regression, at least asymptotically,
see also Bai (2003).

Finally, it is worth noting that changes in the speciÞcation of the esti-
mators under analysis in general do not affect the results substantially.
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4.2 The experimental design

We consider two different generating mechanisms for the variables:

�� = Λ�� + ��� (13)

��� = �0�� + 	��

and

�� =  ��−1 + ��� (14)

��� = !���−1 + 	�


The former is a factor model, where the number of factors is set equal to
3, the factors are independent AR(1) processes with root equal to 0
8, and
the elements of Λ and � are independent draws from a uniform distribution
over the interval [0� 1]. The latter is a set of uncorrelated AR(1) processes,
each with root equal to 0
8 ( is a diagonal matrix). In both cases �� and
	� are i.i.d. "(0� 1) errors, uncorrelated across themselves, �� contains 50
variables while ��� is univariate, and the sample size is set equal to 100.

When the generating mechanism is (13) we expect the factor estimator
to be the best, but the Chow and Lin (1971) method should also perform
well since the number of regressors (Þve) is larger than the number of factors,
so that the former can provide a good approximation for the latter. When
data are generated according to (14) the univariate estimators should be
ranked Þrst, since in this case the multivariate methods boil down to simple
linear interpolation. The third set of experiments we consider deals with
misspeciÞcation. We use the factor model to generate the data, but there
are ten factors in the DGP while only Þve are used in the factor based
interpolation procedure. Hence, though more complicated models could be
used, those in (13) and (14) already provide a good framework to evaluate
the relative merits of the alternative interpolation methods.

We set the disaggregation frequency at 4, so that only 25 values of ���
can be observed. This mimics disaggregation of annual data into quarterly
data. We analyze both stock and ßow variables. Next we also consider the
case of missing observations at the beginning of the series, assuming that
either 5 or 40 starting values of ��� are unobservable. For each case we run
2000 replications, and rank the estimators on the basis of the average ab-
solute and mean square disaggregation error (MAE and MSE, respectively).
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We also compute percentiles of the distribution of the absolute and mean
square disaggregation error, which provides additional information on the
performance of the estimators.

4.3 Results

The Monte Carlo results, summarized in Tables 2-4, indicate that the MSE
and the MAE lead to similar rankings of the various interpolation methods.
Moreover, the mean and the median of the distribution of the disaggregation
errors are in general very close, with a few exceptions in the case of the
Kalman smoother. Hence, in what follows, we focus on the ranking based
on the median of the MSE.

A Þrst, robust across experiments, Þnding is that the balanced panel
factor method dominates in a large majority of cases the unbalanced panel
approach. This happens for about 70-90% of the replications for most exper-
iments, with lower Þgures only in the case of the estimation of a low number
of missing observations. This is an important Þnding since it indicates that
when more than one series needs to be interpolated (or backdated), it would
not be advisable to use the partial information contained into the other series
with incomplete coverage to improve the estimates for any given incomplete
series, unless very few observations are missing.

When the data are generated by a factor model, the Þgures in Table 2
clearly show that the factor method performs best. The only exception is the
case of an incomplete ßow variable, where the other multivariate method,
namely the Chow and Lin procedure, yields slightly better results. This
may be related to the design of the experiment, since the Chow and Lin
regressors are carefully selected on the basis of their correlation properties
with the incomplete series.

It is also worth noting that with this DGP the univariate methods do
not perform satisfactorily, since neither the Spline, nor the Kalman Þlter
or smoother come close to the multivariate interpolation methods in any of
the experiments conducted. The differences are smaller when evaluated on
the basis of the MAE, but still the performance is in general 50% to 100%
worse.

When the data are generated by independent univariate AR processes, in
turn, univariate methods would be expected to provide better estimates, but
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the results in Table 3 show that this is not a clear-cut case. For interpolation
of stock and ßow variables, the Spline method is the best, with the Kalman
Þlter and smoother ranked second, but the factor estimator is a close third
best, its MAE performance is only about 10% worse than the parametric
univariate methods. In addition, the factor method ranks Þrst in the missing
observation case, when 40% of the observations are missing.

The Þnal set of experiments we consider deals with misspeciÞcation. In
Table 4, a 10-factor model generates the data, but a 5-factor model under-
lies the interpolation procedure. Notwithstanding this misspeciÞcation, the
factor method still substantially outperforms the univariate approaches, but
the Chow and Lin remains a very valid alternative.

In summary, the factor based method appears to perform quite well in
the simulation experiments, even when it is based on a misspeciÞed model.
The Chow and Lin approach is ranked a close second, while the univariate
methods perform well only with independent processes, which is quite an
unlikely situation in practice.

5 Applications

In this section we compare the relative merits of the interpolation methods
using data for some European countries. In particular, we consider quarterly
series for GDP growth and inßation (measured as the quarter on quarter
change in the private consumption deßator) for Austria, France, Finland,
Germany, Italy, Spain and the Netherlands, over the period 1977:3-1999:2.1

We carry out two kinds of interpolation exercises. First, we drop all the ob-
servations but those corresponding to the last quarter of each year. Second,
we drop the initial 20% of the observations. In both cases, we interpolate
the missing observations so as to recreate them, and then compare the in-
terpolated with the actual values. The price deßator is treated as a stock
variable and GDP growth as a ßow.

For inßation, the factors are extracted from a dataset that contains, for
all the countries under analysis, several price variables (in growth rates),
such as CPI, GDP deßator, export and import deßators, etc., overall 50
series. For GDP growth, we use a set of real variables, that includes among

1For The Netherlands only GDP growth is analyzed since deßator series are not avail-
able over the full sample.
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others GDP components, capacity utilization, industrial production, em-
ployment and the unemployment rate, etc., a total of 82 series. The two
datasets are extracted from the one used in Angelini et al. (2001), and the
Data Appendix contains a list of all the series employed in the current analy-
sis. As in the simulation experiments, we extract three factors in each case.
Previous work by Stock and Watson (1998) for the US, and Marcellino et
al. (2001) and Angelini et al. (2001) for Europe have shown that a limited
number of factors are sufficient to explain a substantial proportion of the
variability of all the series. We use the same setup as in the simulations
also for the Chow and Lin method (namely Þve regressors are selected from
the datasets used for factor extraction, following the procedure outlined in
the previous section) and for the univariate methods. The comparison of
the methods is based on the mean square and mean absolute disaggregation
errors, and all results are summarized in Table 5.

As regards the interpolation of missing infra-year data, in the case of the
inßation rates, the Chow and Lin method delivers the best results for 5 of the
6 countries, the only exception being Austria for which the factor procedure
works best. In the case of GDP growth, the multivariate methods are again
superior, being the best in 5 out of 7 countries. The performance of the factor
and Chow and Lin procedures is now similar, with the latter being better
than the former in 3 cases (Austria, Germany and Italy), vice versa in 2 cases
(Spain and the Netherlands), with a mixed outcome in 2 cases (Finland and
France). A similar pattern emerges in the other interpolation exercise, i.e.
when estimating missing observations that are concentrated at the beginning
of the sample. Multivariate methods are better than univariate methods,
Chow and Lin is always the best for the price series, and its performance is
similar to the factor based procedure for GDP growth.

To evaluate the robustness of the results we have (a) increased the num-
ber of factors to Þve, as the number of regressors in the Chow and Lin
method; (b) decreased the number of regressors in the Chow and Lin method
to three, as the number of factors in the base case; (c) used the consumer
price index instead of the consumption deßator. Although there were some
changes in the resulting Þgures, the ranking of the interpolation methods
was virtually unaltered in all cases.

Overall, these results are in line with the outcome of the simulation ex-
periments and indicate that the gains from using multivariate interpolation
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procedures can be substantial, though the traditional Chow and Lin proce-
dure combined with our variable selection strategy is a strong competitor
for the new factor based method.

6 Using the interpolated data

On the top of the actual-interpolated comparison, which indicates the extent
to which the interpolated series Þt the actual underlying data, it may be
worth assessing the extent to which using the interpolated series instead of
the actual ones would impact on possible subsequent econometric exercises.
Since the disaggregation error can be considered as a measurement error,
we can expect the dynamic properties of the interpolated series and its
relationships with other variables to be somewhat affected, with the extent
of the bias depending on the goodness of the disaggregation method but also
on the speciÞc econometric characteristic under analysis. In particular, in
this section we investigate the autocorrelation properties of the interpolated
data as well as regression results, both in simulation experiments and using
the real data in the previous section.

For the simulations, we generate the data according to the factor model
and the AR DGPs in equations (13) and (14). Then we compute the dif-
ference (#) between the Þrst order autocorrelation coefficients for the actual
and interpolated series, and the absolute value of the difference (�) of the
estimated coefficient of $� in the regression �� = $�+%�, with %� i.i.d. N(0,1),
using actual and interpolated data for both �� and $�.

The results are reported in Tables 6 and 7 for the two types of DGPs, and
each Table presents Þgures for stock and ßow variables, and for a different
fraction of missing observations at the beginning of the sample (either 5% or
40%). As before, we report both the mean and percentiles of the empirical
distribution of # and � over 2000 replications.

Three main comments can be made. First, the ranking of the disaggrega-
tion methods in terms of bias reßects that of Tables 2 and 3, which suggests
that minimizing the mean square disaggregation error is a good criterion to
minimize also the bias in subsequent econometric analyses with the inter-
polated series. Second, the size of # and � is much smaller in the case of
missing observations at the beginning of the sample than for interpolation
of stock and ßow variables, which is again in line with the results in Tables
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2 and 3 and is mainly due to the lower fraction of missing data, i.e. 5% or
40% versus 75% in the case of stock and ßow variables. Third, in general
� is smaller than #, indicating that the estimation of dynamic relationships
can be more affected by interpolation than contemporaneous relationships,
which is also a sensible result.

As far as the application with real data is concerned, we compute # as
before, while � is the difference of the estimated coefficients in a regression
of inßation or GDP growth for country � on the same variable for country �,
using actual and interpolated series. The results are summarized in Table 8
and three main comments are again in order. First, for inßation the lowest
values for # are achieved by the factor method in 4 out of 6 cases, with Chow
and Lin being the best in the remaining two cases. On the other hand, Chow
and Lin generates the lowest values for � in 3 out of 5 cases, with the spline
and the smoother performing best in the other two cases. The biases are
in general small, ranging for # between 0
001 and 0
12, and for � between
0
001 and 0
035. Second, for GDP growth Chow and Lin is the best both in
terms of # (6 out 7 cases) and of � (4 out of 6 cases). The interesting result
is that now the biases are larger, in the range 0
02-0
60 for # and 0
008-0
23
for �. This is presumably related to the lowest persistence of GDP growth
with respect to the inßation rate. Third, for the case of missing observations
at the beginning of the sample Chow and Lin is clearly the best as regards
� for inßation, while the results are evenly distributed for # and for GDP
growth. Both biases, for both variables, are substantially smaller than in
the case of interpolation.

The even better performance of the Chow and Lin procedure in the em-
pirical analysis with respect to the simulations is likely due to the covariance
structure of the datasets, that is such that there exist some variables highly
correlated both at the disaggregate and at the aggregate level with the series
to be interpolated. In this context, the variable selection procedure imple-
mented for the Chow and Lin method manages to pick up these variables,
while the factor method does not take into consideration the correlation
with the variable of interest when extracting the factors. On the other
hand, the sizeable biases that can emerge in the estimation of the Þrst order
autocorrelation function using interpolated data provide a warning for the
interpretation of the results of dynamic models estimated with interpolated
data.
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7 Conclusions

In this paper we have developed a factor based approach to interpolation and
estimation of missing observations. The method can exploit the information
in very large datasets, and hence it is expected to perform better than exist-
ing limited information based approaches. We have compared this method
with a number of more standard alternative techniques, from a theoretical
point of view and using both artiÞcially generated and actual datasets.

First, the theoretical analysis indicates that large information sets are
potentially useful, though the resulting estimators are computationally not
feasible unless some restrictions are imposed on the generating mechanism
of the data, such as a factor structure.

Second, we have run Monte Carlo experiments in which deleted data
from artiÞcial series were re-estimated using the whole range of considered
methods (Kalman Þlter and smoother, Spline, Chow and Lin, factor mod-
els). Using a sample of 25 years of quarterly data for 50 series, four cases
were examined, namely two in which stock and ßow variables are only avail-
able at the annual frequency, and also two with variables for which there are
missing backdata, amounting to 5% or 40% of the whole sample. Experi-
ments were conducted with DGP�s being AR(1) or factor models. To allow
for some impact of misspeciÞcation, we also estimated factor models com-
prising a number of factors largely inferior to that of the DGP. Performance
was evaluated by the Mean Absolute (interpolation / backdating) Error,
Mean Squared Error and the quantiles of the absolute or squared difference
between the interpolated series and the original �true� one.

The conclusion of the simulation experiments is that with a factor-DGP,
factor method tends to dominate all of the others, although the Chow and
Lin method also performs well. Univariate methods, on the contrary, yield
poor results. When the DGP is univariate, as expected, univariate methods
do the best job, in particular the Spline, but the factor method gives com-
parable results. On the other hand, real-life data is not very likely to follow
such a simplistic DGP.

Third, we have used actual time-series, namely quarterly GDP and in-
ßation for 7 countries of the euro area, for which either all observations are
dropped but the last quarter each year or 20% of the sample is dropped, at
the earlier part of it, thereby mimicking the experimental design employed
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for the artiÞcial series.
The results are similar to the factor-DGP Monte Carlo results, with

the multivariate methods clearly outperforming the univariate ones. The
Chow and Lin technique in particular delivers very good results overall,
in particular for inßation. One reason to explain this comparatively better
performance, with respect to the factor method, is that the variables to be
used in the Chow and Lin procedure were pre-selected according to the cor-
relation with the series to be interpolated / backdated. Although this biases
somewhat the experiment against the factor method, such an approach is
however supposed to reßect practioners� standard practice.

Finally, we have tried to assess the extent to which using such interpo-
lated series in subsequent econometric exercises could affect the results. This
was done also using both artiÞcial and actual series, checking the extent to
which substituting the interpolated / backdated series to the original ones
would affect both the estimated Þrst order autocorrelation and a regression
coefficient between two series. The results this time were more favourable
to the Chow and Lin technique, in particular for growth. This presum-
ably stresses again the importance of the pre-selection of most appropriate
variables before running the interpolation procedure. An interesting caveat
resulting from the analysis is that biases can be sizeable, especially in the
case of interpolation where there are a relatively large number of missing
observations.
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Table 1. Alternative Estimators

Joint : bY = αY + βX

α = (VYo −CYoXV
−1
X CXYo)W

0
h
W(VYo −CYoXV

−1
X CXYo)W

0
i−1

β =
h
I−VYoW

0
(WVYoW

0
)−1W

i
CYoX

h
VX −CXYoW

0
(WVYoW

0
)−1WCYoX

i−1
Factor : bYF = αFY + βFF

αF = (VYo −CY oFV−1F CFY o)W
0
h
W(VYo −CY oFV−1F CFY o)W

0
i−1

βF =
h
I−VYoW

0
(WVY oW

0
)−1W

i
CY oF

h
VF −CFY oW0

(WVY oW
0
)−1WCY oF

i−1
Univariate : bYU = αUY

αU = VYoW
0
V−1Y

Conditional : bYC = αCY + βCX

αC = (VYo −CYoXV
−1
X CXYo)W

0
h
W(VYo −CYoXV

−1
X CXYo)W

0
i−1

βC = [I−αC ]CYoXVX

Preliminary : bYP = Yo
p +αU (Y −WYo

p)

αU = VYoW
0
V−1Y

Note: See Section 2 for a definition of the relevant matrices.
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Table 2. Disaggregation error, DGP DFM 3 factors

STOCK

MSE

avg .05 .25 .50 .75 .95

DFM 0.306 0.130 0.200 0.266 0.372 0.613

Chow − Lin 0.381 0.175 0.264 0.342 0.459 0.706

Spline 1.173 0.720 0.981 1.170 1.366 1.624

K− filter 0.859 0.605 0.737 0.837 0.947 1.176

K− smoother 1.403 0.593 0.739 0.840 0.955 1.224

MAE

avg .05 .25 .50 .75 .95

0.373 0.251 0.310 0.357 0.423 0.543

0.418 0.291 0.356 0.405 0.473 0.582

0.738 0.583 0.676 0.741 0.803 0.878

0.639 0.537 0.593 0.634 0.676 0.757

0.648 0.532 0.593 0.634 0.677 0.764

Fraction of cases where balanced panel works better than non balanced panel: 0.903

FLOW

MSE

avg .05 .25 .50 .75 .95

DFM 0.463 0.249 0.364 0.450 0.556 0.707

Chow − Lin 0.359 0.164 0.246 0.326 0.443 0.667

Spline 0.621 0.402 0.528 0.629 0.719 0.818

K− filter 0.653 0.433 0.560 0.652 0.733 0.829

K− smoother 0.645 0.427 0.557 0.650 0.733 0.828

MAE

avg .05 .25 .50 .75 .95

0.537 0.396 0.479 0.537 0.595 0.673

0.470 0.323 0.399 0.458 0.532 0.656

0.628 0.504 0.580 0.636 0.679 0.730

0.641 0.524 0.597 0.647 0.685 0.735

0.639 0.520 0.594 0.646 0.685 0.736

Fraction of cases where balanced panel works better than non balanced panel: 0.710

MISSING OBSERVATIONS 40%

MSE

avg .05 .25 .50 .75 .95

DFM 0.150 0.063 0.096 0.133 0.184 0.296

Chow − Lin 0.173 0.077 0.115 0.157 0.214 0.321

K− smoother 0.814 0.217 0.364 0.441 0.534 0.940

MAE

avg .05 .25 .50 .75 .95

0.191 0.127 0.157 0.184 0.219 0.275

0.206 0.139 0.172 0.200 0.236 0.291

0.375 0.264 0.306 0.339 0.375 0.518

Fraction of cases where balanced panel works better than non balanced panel: 0.730

MISSING OBSERVATIONS 5%

MSE

avg .05 .25 .50 .75 .95

DFM 0.018 0.003 0.008 0.014 0.024 0.047

Chow − Lin 0.021 0.004 0.010 0.017 0.028 0.053

K− smoother 0.047 0.009 0.023 0.040 0.063 0.111

MAE

avg .05 .25 .50 .75 .95

0.023 0.010 0.016 0.022 0.029 0.041

0.025 0.012 0.018 0.024 0.031 0.044

0.039 0.017 0.029 0.037 0.047 0.065

Fraction of cases where balanced panel works better than non balanced panel: 0.586

Note: The table reports the mean and percentiles of the empirical distribution of the MSE and MAE, computed over 2000

replications, when the DGP is as in (13), for different disaggregation methods, types of variables and of missing observations.
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Table 3. Disaggregation error, DGP AR(1)

STOCK

MSE

avg .05 .25 .50 .75 .95

DFM 0.773 0.585 0.702 0.763 0.833 0.981

Chow − Lin 0.843 0.531 0.695 0.818 0.961 1.239

Spline 0.545 0.292 0.406 0.511 0.645 0.889

K− filter 0.717 0.376 0.533 0.679 0.831 1.164

K− smoother 0.901 0.306 0.465 0.623 0.800 1.172

MAE

avg .05 .25 .50 .75 .95

0.653 0.536 0.588 0.625 0.691 0.855

0.691 0.504 0.589 0.650 0.739 1.007

0.502 0.343 0.427 0.487 0.557 0.709

0.613 0.404 0.505 0.581 0.665 0.940

0.598 0.364 0.469 0.553 0.644 0.929

Fraction of cases where balanced panel works better than non balanced panel: 0.951

FLOW

MSE

avg .05 .25 .50 .75 .95

DFM 0.442 0.313 0.379 0.437 0.495 0.600

Chow − Lin 1.013 0.411 0.647 0.892 1.237 1.978

Spline 0.240 0.132 0.183 0.228 0.286 0.390

K− filter 0.382 0.186 0.273 0.354 0.462 0.630

K− smoother 1.294 0.170 0.252 0.333 0.446 0.625

MAE

avg .05 .25 .50 .75 .95

0.518 0.434 0.480 0.516 0.553 0.612

0.781 0.513 0.639 0.755 0.891 1.134

0.380 0.287 0.337 0.377 0.420 0.487

0.474 0.341 0.411 0.464 0.529 0.623

0.470 0.325 0.396 0.452 0.520 0.620

Fraction of cases where balanced panel works better than non balanced panel: 0.946

MISSING OBSERVATIONS 40%

MSE

avg .05 .25 .50 .75 .95

DFM 0.394 0.211 0.308 0.386 0.469 0.601

Chow − Lin 0.446 0.263 0.360 0.441 0.521 0.648

K− smoother 1.578 0.228 0.353 0.463 0.601 0.927

MAE

avg .05 .25 .50 .75 .95

0.319 0.234 0.282 0.319 0.354 0.406

0.340 0.261 0.305 0.341 0.371 0.420

0.382 0.242 0.304 0.352 0.405 0.517

Fraction of cases where balanced panel works better than non balanced panel: 0.871

MISSING OBSERVATIONS 5%

MSE

avg .05 .25 .50 .75 .95

DFM 0.057 0.007 0.020 0.041 0.077 0.171

Chow − Lin 0.059 0.008 0.022 0.042 0.078 0.161

K− smoother 0.042 0.005 0.014 0.029 0.055 0.128

MAE

avg .05 .25 .50 .75 .95

0.043 0.015 0.027 0.039 0.055 0.087

0.044 0.017 0.028 0.040 0.056 0.084

0.036 0.013 0.022 0.033 0.045 0.074

Fraction of cases where balanced panel works better than non balanced panel: 0.815

Note: The table reports the mean and percentiles of the empirical distribution of the MSE and MAE, computed over 2000

replications, when the DGP is as in (14), for different disaggregation methods, types of variables and of missing observations.
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Table 4. Disaggregation error, DGP DFM Mis-specified

STOCK

MSE

avg .05 .25 .50 .75 .95

DFM 0.213 0.098 0.148 0.192 0.259 0.397

Chow − Lin 0.223 0.110 0.162 0.209 0.268 0.384

Spline 1.417 1.023 1.232 1.399 1.579 1.883

K− filter 0.962 0.715 0.824 0.919 1.049 1.347

K− smoother 1.627 0.722 0.833 0.928 1.057 1.392

MAE

avg .05 .25 .50 .75 .95

0.313 0.216 0.266 0.304 0.355 0.437

0.322 0.229 0.278 0.316 0.359 0.433

0.817 0.690 0.768 0.816 0.868 0.942

0.677 0.579 0.627 0.665 0.713 0.816

0.690 0.581 0.631 0.669 0.718 0.822

Fraction of cases where balanced panel works better than non balanced panel: 0.996

FLOW

MSE

avg .05 .25 .50 .75 .95

DFM 0.585 0.362 0.480 0.577 0.682 0.834

Chow − Lin 0.236 0.117 0.170 0.220 0.286 0.409

Spline 0.762 0.581 0.694 0.772 0.836 0.910

K− filter 0.758 0.571 0.692 0.758 0.822 0.899

K− smoother 4.042 0.569 0.692 0.758 0.823 0.900

MAE

avg .05 .25 .50 .75 .95

0.607 0.475 0.553 0.608 0.663 0.732

0.382 0.274 0.329 0.375 0.428 0.514

0.697 0.609 0.664 0.702 0.733 0.773

0.695 0.604 0.662 0.695 0.728 0.769

0.714 0.605 0.662 0.696 0.729 0.769

Fraction of cases where balanced panel works better than non balanced panel: 0.975

MISSING OBSERVATIONS 40%

MSE

avg .05 .25 .50 .75 .95

DFM 0.098 0.043 0.067 0.091 0.120 0.176

Chow − Lin 0.096 0.045 0.068 0.090 0.117 0.167

K− smoother 1.170 0.296 0.377 0.443 0.529 1.422

MAE

avg .05 .25 .50 .75 .95

0.155 0.103 0.131 0.152 0.176 0.214

0.155 0.107 0.132 0.152 0.174 0.211

0.396 0.273 0.310 0.340 0.374 0.600

Fraction of cases where balanced panel works better than non balanced panel: 0.997

MISSING OBSERVATIONS 5%

MSE

avg .05 .25 .50 .75 .95

DFM 0.012 0.002 0.006 0.010 0.016 0.028

Chow − Lin 0.012 0.002 0.006 0.009 0.015 0.028

K− smoother 0.052 0.012 0.029 0.047 0.069 0.114

MAE

avg .05 .25 .50 .75 .95

0.019 0.009 0.014 0.018 0.024 0.033

0.019 0.009 0.014 0.018 0.023 0.032

0.041 0.020 0.031 0.040 0.050 0.065

Fraction of cases where balanced panel works better than non balanced panel: 0.974

Note: The table reports the mean and percentiles of the empirical distribution of the MSE and MAE, computed over 2000

replications, when the DGP is as in (13) but with 10 factors in the DGP and 5 used in the factor model.
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Table 5. Estimation of quarterly data

INFLATION

MSE

AT DE ES FI FR IT

DFM 0.42 0.47 0.13 0.30 0.09 0.06

Chow − Lin 0.47 0.25 0.11 0.23 0.06 0.02

Spline 0.55 0.70 0.28 0.34 0.18 0.07

K− filter 0.57 0.60 0.34 0.50 0.18 0.12

K− smoother 0.54 0.58 0.30 0.50 0.17 0.07

MAE

AT DE ES FI FR IT

0.43 0.46 0.26 0.36 0.19 0.16

0.44 0.32 0.20 0.33 0.15 0.10

0.49 0.55 0.33 0.39 0.27 0.18

0.50 0.49 0.40 0.46 0.31 0.24

0.47 0.48 0.37 0.46 0.30 0.17

MISSING OBSERVATIONS 20%

MSE

AT DE ES FI FR IT

DFM 0.12 0.12 0.08 0.07 0.06 0.03

Chow − Lin 0.07 0.11 0.04 0.05 0.04 0.009

K− smoother 0.15 0.46 0.17 0.14 0.71 0.30

MAE

AT DE ES FI FR IT

0.12 0.12 0.10 0.09 0.10 0.06

0.09 0.12 0.07 0.08 0.07 0.04

0.15 0.25 0.16 0.15 0.30 0.18

REAL GDP GROWTH

MSE

AT DE ES FI FR IT NL

DFM 0.80 0.75 0.36 0.81 0.40 0.56 0.57

Chow− Lin 0.74 0.53 0.43 0.81 0.40 0.39 0.73

Spline 0.87 0.84 0.27 0.76 0.46 0.57 0.71

K− filter 0.76 0.80 0.26 0.83 0.48 0.63 0.58

K− smoother 0.78 0.86 0.28 0.79 0.50 0.63 0.58

MAE

AT DE ES FI FR IT NL

0.64 0.66 0.45 0.70 0.53 0.57 0.55

0.63 0.57 0.53 0.70 0.50 0.48 0.63

0.67 0.68 0.40 0.67 0.56 0.57 0.60

0.62 0.69 0.40 0.71 0.59 0.62 0.55

0.63 0.71 0.41 0.69 0.61 0.62 0.55

MISSING OBSERVATIONS 20%

MSE

AT DE ES FI FR IT NL

DFM 0.36 0.12 0.29 0.34 0.17 0.27 0.27

Chow− Lin 0.37 0.11 0.20 0.22 0.20 0.22 0.69

K− smoother 0.40 0.30 0.20 0.26 0.30 0.42 0.35

MAE

AT DE ES FI FR IT NL

0.18 0.12 0.20 0.19 0.16 0.19 0.17

0.19 0.12 0.17 0.17 0.16 0.16 0.30

0.20 0.20 0.16 0.19 0.19 0.24 0.20

Note: Inflation is treated as a stock variable, GDP growth as a flow variable.

AT: Austria, DE: Germany, ES: Spain, FI: Finland, FR: France, IT: Italy, NL: The Netherlands
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Table 6. Properties of interpolated data, DGP DFM 3 factors

STOCK

ρ

avg .05 .25 .50 .75 .95

DFM 0.099 0.007 0.037 0.080 0.142 0.245

Chow− Lin 0.110 0.018 0.041 0.090 0.152 0.290

Spline 0.670 0.303 0.514 0.671 0.820 1.038

K− filter 0.335 0.027 0.138 0.290 0.494 0.802

K− smoother 0.375 0.033 0.168 0.335 0.544 0.870

β

avg .05 .25 .50 .75 .95

0.124 0.010 0.049 0.102 0.173 0.326

0.121 0.009 0.049 0.100 0.169 0.304

0.111 0.009 0.044 0.092 0.157 0.277

0.168 0.014 0.068 0.145 0.242 0.404

0.183 0.015 0.072 0.154 0.254 0.428

FLOW

ρ

avg .05 .25 .50 .75 .95

DFM 0.476 0.220 0.360 0.472 0.577 0.746

Chow− Lin 0.144 0.012 0.056 0.119 0.201 0.368

Spline 0.781 0.466 0.636 0.783 0.921 1.102

K− filter 0.586 0.231 0.440 0.588 0.735 0.924

K− smoother 0.606 0.253 0.459 0.609 0.758 0.952

β

avg .05 .25 .50 .75 .95

0.076 0.007 0.029 0.063 0.110 0.195

0.094 0.006 0.034 0.077 0.134 0.244

0.076 0.006 0.030 0.062 0.108 0.191

0.084 0.006 0.032 0.068 0.118 0.212

0.097 0.006 0.033 0.067 0.119 0.215

MISSING OBSERVATIONS 40%

ρ

avg .05 .25 .50 .75 .95

DFM 0.051 0.004 0.018 0.041 0.072 0.136

Chow− Lin 0.054 0.004 0.019 0.043 0.076 0.140

K− smoother 0.125 0.007 0.037 0.083 0.153 0.415

β

avg .05 .25 .50 .75 .95

0.053 0.004 0.020 0.043 0.074 0.137

0.052 0.004 0.020 0.041 0.072 0.140

0.099 0.004 0.023 0.048 0.090 0.417

MISSING OBSERVATIONS 5%

ρ

avg .05 .25 .50 .75 .95

DFM 0.013 0.001 0.004 0.010 0.019 0.037

Chow− Lin 0.014 0.001 0.005 0.011 0.019 0.039

K− smoother 0.021 0.001 0.006 0.014 0.028 0.064

β

avg .05 .25 .50 .75 .95

0.013 0.001 0.004 0.010 0.017 0.035

0.013 0.001 0.005 0.010 0.018 0.034

0.014 0.001 0.005 0.011 0.019 0.040

Note: The table reports the difference (ρ) between the first order autocorrelation coefficients for the actual and interpolated series,

and the absolute value of the difference (β) of the estimated coefficient of xt in the regression yt = xt + ut,

with ut i.i.d. N(0,1), using actual and interpolated data for both yt and xt. The DGP is as in (13).
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Table 7. Properties of interpolated data, DGP AR(1)

STOCK

ρ

avg .05 .25 .50 .75 .95

DFM 0.615 0.243 0.503 0.648 0.752 0.876

Chow− Lin 0.463 0.154 0.319 0.450 0.602 0.809

Spline 0.091 0.009 0.045 0.084 0.127 0.202

K− filter 0.302 0.019 0.110 0.276 0.448 0.665

K− smoother 0.247 0.016 0.087 0.187 0.366 0.614

β

avg .05 .25 .50 .75 .95

0.137 0.009 0.051 0.115 0.194 0.346

0.187 0.016 0.079 0.166 0.273 0.437

0.107 0.009 0.042 0.088 0.151 0.266

0.181 0.012 0.069 0.151 0.268 0.447

0.199 0.014 0.077 0.163 0.288 0.473

FLOW

ρ

avg .05 .25 .50 .75 .95

DFM 0.152 0.039 0.107 0.150 0.193 0.271

Chow− Lin 0.390 0.062 0.235 0.385 0.526 0.739

Spline 0.160 0.077 0.118 0.154 0.194 0.265

K− filter 0.098 0.007 0.036 0.075 0.125 0.239

K− smoother 0.099 0.007 0.038 0.077 0.130 0.242

β

avg .05 .25 .50 .75 .95

0.036 0.003 0.014 0.029 0.053 0.093

0.120 0.007 0.041 0.093 0.171 0.334

0.036 0.003 0.014 0.029 0.051 0.091

0.052 0.003 0.016 0.037 0.069 0.135

0.053 0.003 0.016 0.037 0.066 0.138

MISSING OBSERVATIONS 40%

ρ

avg .05 .25 .50 .75 .95

DFM 0.039 0.003 0.013 0.029 0.050 0.111

Chow− Lin 0.072 0.005 0.029 0.060 0.103 0.183

K− smoother 0.046 0.004 0.019 0.036 0.062 0.119

β

avg .05 .25 .50 .75 .95

0.046 0.003 0.017 0.038 0.066 0.117

0.055 0.004 0.022 0.046 0.077 0.145

0.623 0.004 0.021 0.046 0.092 0.257

MISSING OBSERVATIONS 5%

ρ

avg .05 .25 .50 .75 .95

DFM 0.010 0.001 0.003 0.007 0.014 0.031

Chow− Lin 0.011 0.001 0.003 0.008 0.015 0.034

K− smoother 0.010 0.001 0.004 0.008 0.014 0.027

β

avg .05 .25 .50 .75 .95

0.012 0.001 0.004 0.009 0.017 0.036

0.013 0.001 0.004 0.009 0.017 0.037

0.015 0.001 0.004 0.010 0.020 0.043

Note: The table reports the difference (ρ) between the first order autocorrelation coefficients for the actual and interpolated series,

and the absolute value of the difference (β) of the estimated coefficient of xt in the regression yt = xt + ut,

with ut i.i.d. N(0,1), using actual and interpolated data for both yt and xt. The DGP is as in (14).
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Table 8. Properties of interpolated data, empirical example

INFLATION

ρ

AT DE ES FI FR IT

DFM 0.161 0.086 0.003 0.065 0.027 0.001

Chow− Lin 0.116 0.101 0.004 0.068 0.023 0.006

Spline 0.183 0.183 0.30 0.083 0.037 0.009

K− filter 0.174 0.169 0.031 0.078 0.026 0.005

K− smoother 0.185 0.193 0.032 0.079 0.026 0.011

β

AT ES FI FR IT

0.089 0.047 0.021 0.019 0.002

0.035 0.016 0.016 0.025 0.001

0.101 0.049 0.010 0.015 0.017

0.133 0.011 0.037 0.017 0.010

0.129 0.020 0.040 0.013 0.013

MISSING OBSERVATIONS 20%

ρ

AT DE ES FI FR IT

DFM 0.040 0.061 0.028 0.031 0.012 0.002

Chow − Lin 0.004 0.029 0.015 0.026 0.011 0.004

K− smoother 0.002 0.018 0.026 0.028 0.000 0.008

β

AT ES FI FR IT

0.020 0.056 0.053 0.079 0.019

0.008 0.004 0.007 0.017 0.014

0.160 0.117 0.134 0.237 0.128

REAL GDP GROWTH

ρ

AT DE ES FI FR IT NL

DFM 0.74 0.66 0.04 0.71 0.15 0.22 0.44

Chow− Lin 0.33 0.54 0.06 0.60 0.02 0.12 0.12

Spline 0.94 0.84 0.08 0.88 0.31 0.42 0.64

K− filter 0.84 0.77 0.07 0.84 0.26 0.31 0.57

K− smoother 0.85 0.77 0.07 0.87 0.29 0.32 0.57

β

AT ES FI FR IT NL

0.37 0.19 0.20 0.008 0.18 0.30

0.19 0.06 0.05 0.05 0.12 0.24

0.37 0.19 0.24 0.01 0.17 0.30

0.37 0.19 0.24 0.009 0.18 0.31

0.37 0.19 0.24 0.03 0.18 0.31

MISSING OBSERVATIONS 20%

ρ

AT DE ES FI FR IT NL

DFM 0.18 0.06 0.03 0.04 0.07 0.06 0.19

Chow− Lin 0.24 0.05 0.03 0.06 0.04 0.07 0.05

K− smoother 0.18 0.06 0.03 0.04 0.09 0.06 0.20

β

AT ES FI FR IT NL

0.14 0.03 0.01 0.03 0.02 0.03

0.15 0.08 0.02 0.02 0.25 0.00

0.13 0.04 0.006 0.05 0.23 0.03

Note: The table reports the difference (ρ) between the first order autocorrelation coefficients for the actual and interpolated series,

and the absolute value of the difference (β) of the estimated coefficients in a regression of inflation or GDP growth for country i

on the same variable for country j, using actual and interpolated series.

AT: Austria, DE: Germany, ES: Spain, FI: Finland, FR: France, IT: Italy, NL: The Netherlands
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Data Appendix

Variables are denoted by three characters and countries by two.

CPI: Consumer Price Index, National Concept

MTD: Import Deflator

PCD: Private Consumption Deflator

PPI: Producers Price Index

XTD: Export Deflator

GCD: Government Consumption Deflator

ITD: Gross Fixed Capital Formation Deflator

YED: GDP Deflator

CAP: Capacity Utilizatiion

GDP: Real GDP

MTR: Real Imports

XTR: Real Exports

PCE: Private Consumption Expenditure

LTI: Long-term interest rate

STI: Short-term interest rate

LNN: Total Employment

UNN: Unemployment Rate

IIP: Industrial Production Total

AT: Austria

BE: Belgium

DE: Germany

ES: Spain

FI: Finland

FR: France

IE: Ireland

IT: Italy

NL: Netherlands

PT: Portugal
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List of variables in price dataset

cpiat pcdde yedat

cpibe pcdes yedde

cpide pcdfr yedes

cpies pcdfi yedfi

cpifi pcdit yedfr

cpifr ppiat yedit

cpiie ppide gcdat

cpiit ppies gcdes

cpinl ppifi gcdfi

cpiptg ppifr gcdfr

mtdat ppinl gcdit

mtdde xtdat itdat

mtdes xtdde itdes

mtdfi xtdes itdfi

mtdfr xtdfi itdfr

mtdit xtdfr itdit

pcdat xtdit
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List of variables in real dataset

capde pcees lnnie

capes pcefi lnnit

capfr pcefr lnnnl

capit pceit lnnpt

capnl pcenl unrat

cappt ltiat unrbe

gdpat ltibe unrde

gdpde ltide unres

gdpes ltifi unrfi

gdpfi ltifr unrfr

gdpfr ltiie unrie

gdpit ltiit unrit

gdpnl ltinl unrnl

mtrat stiat unrpt

mtrde stibe iipatg

mtres stide iipbe

mtrfi sties iipde

mtrfr stifi iipes

mtrit stifr iipfi

mtrnl stiie iipfr

xtrat stiit iipie

xtrde stinl iipit

xtres stipt iipnl

xtrfi lnnat iippt

xtrfr lnnbe

xtrit lnnde

xtrnl lnnes

pceat lnnfi

pcede lnnfr
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