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ABSTRACT

Small Sample Confidence Intervals for Multivariate Impulse
Response Functions at Long Horizons*

Existing methods for constructing confidence bands for multivariate impulse
response functions depend on auxiliary assumptions on the order of
integration of the variables. Thus, they may have poor coverage at long lead
times when variables are highly persistent. Solutions that have been proposed
in the literature may be computationally challenging. The goal of this Paper is
to propose a simple method for constructing confidence bands for impulse
response functions that is not pointwise and that is robust to the presence of
highly persistent processes. The method uses alternative approximations
based on local-to-unity asymptotic theory and allows the lead time of the
impulse response function to be a fixed fraction of the sample size. These
devices provide better approximations in small samples. Monte Carlo
simulations show that our method tends to have better coverage properties at
long horizons than existing methods. We also investigate the properties of the
various methods in terms of the length of their confidence bands. Finally, we
show, with empirical applications, that our method may provide different
economic interpretations of the data. Applications to real GDP and to nominal
versus real sources of fluctuations in exchange rates are discussed.
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1. INTRODUCTION

Impulse response functions (IRFs) play an important role in describing the impact
that shocks have on economic variables and their propagation mechanisms. They are
generally obtained from Vector Autoregressions (VAR) and commonly used to analyze
the response of current and future values of economic variables to a one standard
deviation increase in the current value of the VAR identified shocks. The estimate
of the IRFs and their confidence intervals are commonly based on Lutkepohl (1990)
asymptotic normal approximation or bootstrap approximations to that distribution
(see Kilian (1998a, b)).

Existing methods for constructing IRFs and their confidence intervals, however,
depend on auxiliary assumptions on the order of integration of the variables. In fact,
they may provide very different results depending on whether the series are assumed
to be stationary, exactly integrated or exactly cointegrated. In addition, confidence
bands may have poor coverage properties in small samples in the presence of highly
persistent variables, as shown in Kilian and Chang (2000). These authors compare
finite-sample accuracy and length of commonly used confidence intervals of IRFs
calibrated on existing macroeconomic studies and caution applied researchers against
inference at horizons bigger than 16 quarters, as inference becomes very unreliable.
Unit root pretests do not solve the problem, as the actual coverage of IRF bands
obtained after a pretest can be quite different from the nominal one. The problem
is empirically relevant, as most macroeconomic time series are highly persistent (see
e.g. Stock (1991, 1996)).

The goal of this paper is to propose a method for constructing confidence bands
for IRFs that is robust to the presence of highly persistent processes, that theo-
retically (asymptotically) does not depend on the VAR lag length in the long-run,
and that takes into account sampling variability in an appropriate way. We do so
by using alternative asymptotic approximations based on local-to-unity asymptotic
theory and allowing the lead time of the IRF to be a fixed fraction of the sample
size. These devices provide better approximations in small samples. The advantages
of our method are that: (i) it does not require a researcher to decide whether the
process has a unit root or not; (ii) it is easy to compute (even in multivariate setups,
if the uncertainty is about one root only); (iii) the confidence bands asymptotically
contain the whole true IRF with a pre-specified confidence level (i.e. they are not
pointwise); (7v) it is robust to the presence of deterministic components; (v) it allows
also mildly non-stationary processes (e.g. roots about 1.001). Due to the nature of
our approximation, our confidence bands are appropriate at long lead times and as
long as the process is highly persistent (including a unit root). How long the lead
time in practice has to be in order for our approximation to be accurate will be
investigated in a Monte Carlo experiment.

The empirical literature commonly estimates VARs either in levels or in first
differences, sometimes after unit root pretest procedures. The results are usually



sensitive to the order of integration of the economic variables, and ad-hoc robust-
ness checks are routinely performed to verify the empirical conclusions. That is,
researchers verify that the same results hold whether one uses a specification in levels
or in first differences. However, the latter method will not give any indication of
the overall size of the procedure and, as we show, pretests create considerable size
distortions in confidence bands for IRFs. This paper not only shows how bad size
distortions researchers actually face by applying IRF based on pretests, levels or first
differences (see also Ashley and Verbrugge (2001)), but it also constructively indi-
cates when these distortions are more likely. The paper also shows when and by how
much our procedure improves over these methods. Our method in general works fine
for horizons bigger than or equal to 10. Depending on the persistence, our method
performs better than pretest-based IRF's also for smaller horizons. We also discuss
a simple way for constructing conservative confidence bands that provides reliable
(although conservative) inference at shorter horizons too.

Alternative methods are available in the literature. Andrews (1993) and An-
drews and Chen (1994) provide bias-corrected parameter estimates for obtaining
IRFs for univariate time series. Their method is an important improvement over
normal sampling methods, but the coverage is poor at long lead times and it is com-
putationally demanding. Another available method is Hansen (1999) grid bootstrap
method. However, to date there is no extension of the aforementioned methods to
deal with multivariate processes. Kilian (1998a) provides a useful, improved bias-
corrected bootstrap method that explicitly accounts for the bias and skewness of the
small-sample distribution of the IRF estimator. Sims and Zha (1999) propose an
alternative Bayesian method that characterizes the shape of the likelihood. How-
ever, these methods may not be robust to the presence of highly persistent processes
(roots equal to one or mildly explosive) or deterministic terms, and it is important to
investigate whether there are alternative methods that can provide better coverage
or smaller length of the confidence bands. A recent solution has been proposed by
Gospodinov (2002). His method relies on the inversion of a likelihood ratio test in
which the constrained estimate exploits a null hypothesis on the value of the IRF
at some horizon of interest. His method has the correct size pointwise and confi-
dence bands have small length. Compared to his, the method proposed in this paper
is much less computationally intensive and it is not pointwise; on the other hand,
we rely explicitly on long horizon asymptotics so our method might have worse size
properties at short horizons.

As empirical applications, we revisit the effects of a shock to real GDP and the
nominal versus real sources of fluctuations in exchange rates. We find that shocks
are more persistent than commonly found in VARs estimated in levels due to the
downward bias estimate of the largest root. Thus, in Eichenbaum and Evans (1995),
shocks would seem to disappear more quickly than they really do. On the other
hand, in some other interesting empirical applications where pretests were used, the
processes might have been incorrectly identified as I(1), due to the low power of unit



root tests. This ends up over-estimating the long run effects of the shocks. This
would happen, for example, in Lastrapes (1992) and Clarida and Gali (1994).

2. MOTIVATION AND PREVIEW OF THE RESULTS

Consider a researcher interested in analyzing whether monetary shocks have an effect
on the real exchange rate. An answer to this question is relevant, as it would provide
an empirical contribution to the longstanding debate on flexible versus sticky price
models of exchange rate determination. This question has been analyzed by Chris-
tiano et al. (1995) and Rogers (1999), among others. Researchers working on this
topic typically run VARs to estimate IRF's, and have to face the choice of whether
to use variables in levels or in first differences. While Christiano et al. (1995) use a
VAR in levels, it is also common practice to rely on unit root pretests, as in Rogers
(1999). However, neither a VAR in levels nor pretest based VARs are guaranteed to
provide accurate IRF confidence bands in finite samples.

To document this problem, we show Monte Carlo simulations for a bivariate VAR
where one variable has a root that is close to unity. The experiment, explained more
in details in Section 5, is representative of the practical situation outlined above,
where the researcher needs to include a “key” variable, in that case the real exchange
rate, but neither theory nor unit root pretests provide conclusive evidence on whether
this variable has a unit root or not.!

Figure 4(a) shows that IRFs based on both VARs in levels and unit root pretest-
based VARs provide unreliable inference. The figure shows one minus the actual
coverage rate of the various methods used to construct IRFs confidence bands. The
nominal (desired) coverage rate is 0.90, so that a method performs well when its
line is around 0.10. These lines are reported as a function of §, a parameter that
plays an important role in this paper. ¢ denotes the horizon of the IRF as a fraction
of the total sample size. For example, in a sample of 100 monthly observations, a
horizon of 12 months would correspond to § = 0.12.2 The upper panel in Figure 4(a)
shows that when the root is exactly one, estimation in levels (the line with diamonds)
produces IRFs bands that undercover. In this case, a pretest (the line with circles)
would be a much better choice, as it is approximately around 0.10 at any 6. However,
when the root is close to unity, say 0.97, the bottom panel in Figure 4(a) shows that
the situation is completely different. Unit root pretest lack power and induce the

'In some cases there may be more than one variable for which we can question the presence of
an exact unit root. The results section 5 show that our method is robust to misspecification of the
largest root of other variables in the VAR.

2We chose to report é rather than the horizon because our analysis focuses on small samples, so
that the horizon per se is less important than its ratio to the available sample size. This happens
because, as explained later, the sample size determines the degree of imprecision of the estimate of
the unit root, and the horizon determines how much this imprecision is blown up. See Rossi (2001a)
for more details.



researcher to estimate a misspecified model, that is the model in first differences,
which causes the coverage to be extremely poor. On the other hand, estimation in
levels is now better for relatively large horizons, 6 > 0.10. Thus, the applied researcher
faces the problem of choosing between levels and pretest-based methods, knowing that
neither method is superior to the other, and that their relative performance crucially
depends on the unknown root.

To our knowledge, there is no method that successfully provides a solution to
this problem, although some have been proposed and will be discussed in the rest
of the paper. To overcome this problem, Rogers (1999) estimates a VAR with the
real exchange rate both in levels and in first differences. While this is a clever way
of assessing the robustness of the results, this solution is not satisfactory, as nothing
guarantees that the overall coverage will be correct.

In this paper we instead propose methods that have the correct coverage at
medium to long horizons, where both the level and the pretest based IRFs have
problematic coverage. The dotted line in Figure 4(a) shows one such method. It is
clear that the method has exactly the correct coverage at medium to long horizons
(6 > 0.10), and its coverage properties are robust to whether there is an exact unit
root or not, that is exactly in that region where the usual pretest methods lead to
unreliable inference. In the next section we present these methods, and discuss how
to implement them. More details and Monte Carlo results are available in Section 5.

3. THE MODEL
Let the data generating process (hereafter DGP) be:

(I —®L)w; = uy (1)

wy is a (m x 1) vector of variables, u; is a (m x 1) stationary and ergodic moving
average sequence:’
Ut = G(L)et (2)

=S .
where ¢ is a martingale difference sequence with covariance ¥, O(L) = > O,;L" ,
i=0
Og = I, I is the (m x m) identity matrix and Q'/2 = ©(1)X1/2 is invertible. We will
denote by 7, the structural shocks:

ny = Aoét (3)

Without loss of generality, we can express ® in terms of its eigenvalues and eigen-
vectors: ® = V-IAV. We will assume that Vw is a persistent (close to I(1)) process

3w may contain deterministic components (constants and time trends) but they are irrelevant,
as the IRFs are defined as deviations from the deterministic components (see Phillips (1998)).



and we rule out processes that behave like I(2) — or “almost” I(2) — in small sam-
ples. Thus, A is diagonal with the largest roots of the process on the main diagonal
whereas the eigenvectors V' describe possible cointegrating vectors.* To improve the
asymptotic approximation to highly persistent processes in small samples we use
multivariate local-to-unity asymptotic theory. That is, we model the real part of the
(distinct) largest roots of the VAR, A, as local-to-unity:

1
A=T+— 4
+7C (4)

where C = diag(cy, ¢z, ...cp,). By allowing these components to be either negative or
positive, our approximation encompasses both close to unit root and mildly explosive
processes.

To obtain better asymptotic approximations to IRFs in small samples, we also
assume that the lead time of the IRF is a fixed fraction of the sample size:

h

Considering the two assumptions (4) and (5) together, we have that:

Ah Cé

— e
T—o0
where €©? denotes a diagonal matrix with (6015, ec2d ...ecm‘s) on the main diagonal.
When the variables are highly persistent, from (1), the DGP for the rotated
variables y; = Vw; can be approximated as:’

h—1
Yern = ZOAZ@ (1) Aoty n—i + Ays + 0p(T?) (6)
=
where we used (3). IRF's are easily obtained by using (6) after the shocks are identi-
fied. The IRF of the effect of a unitary j — th structural shock on the k — th variable
in y4pn will be:

oy

S i ARG (1) Ao + 0p(TV?) = 14690 (1) Aok, (7)
ony

where is denotes the s — th column of the m x m identity matrix and “=" denotes

weak convergence. Note that the IRF depends on the largest roots, described by C,

We assume throughout that the cointegrating vectors are known (as in Elliott, Jansson and
Pesavento (2001)). The general model (1) nests some popular models as particular cases (see the
Appendix).

For a proof of (6), see Rossi (2001b). Note that (6) is a device for obtaining better asymptotic
approximations in small samples. Assumptions (4) and (5) govern its validity.



and on the cumulated short run dynamics, described by O (I). At long horizons, the
uncertainty associated with the short run parameters is of smaller order than the
uncertainty associated with the largest root, and we can ignore the uncertainty in
the estimation of © (I) by simply replacing it with a consistent estimator. Although
C cannot be consistently estimated, methods to construct valid confidence intervals
for C are available. Confidence intervals for the IRF at long horizons can then be
constructed from confidence intervals for C. More details on how to implement this
method in practice are provided in Sections 4 and 5.

As usual, different types of identification will result in different IRFs. The long-
run identification (proposed by Blanchard and Quah (1989)) imposes a triangular
structure to © (I) Ap. The Wold ordering identification (Sims (1980)) imposes con-
straints on Ag. We will be agnostic about the identification procedure and will take
it as given, as our goal is to provide a method for constructing IRF bands that have
correct coverage, not to propose new methods to identify shocks.

4. UNIVARIATE IMPULSE RESPONSE FUNCTIONS WITH A POSSIBLE UNIT ROOT

We perform a simple Monte Carlo experiment to compare the coverage of the method
proposed in this paper with those existing in the literature. The DGP is the following;:

p

11 (1= XLy = ®)
where \; are the possible roots of the process and Ay = p = 1 + ¢/T. Nominal
coverage is 0.90, T' = 100, and the number of Monte Carlo replications is 5,000.

Our method is implemented as follows. First, we construct a median unbiased
confidence interval for “c” by using methods that are available in the literature (in
this case, Stock (1991)). Denote this confidence interval by [co, c1]. With m = 1,

p
(7) becomes e (1), where O (1) from (8) is equal to [,H2(1 —)j)]7L. Note that
]:
© (I) can be consistently estimated by an ADF regression (see Rossi (2001a)). The
confidence interval for the IRF at horizon h = [6T] then becomes:

(P8 (1), %O (1)] 9)

The methods that we will consider are:

- the method proposed in this paper, labeled “Big h”;

- the method proposed by Andrews and Chen (1994), where we obtain Approx-
imately Median Unbiased estimates of ADF coefficients and use them to simulate
quantiles of IRF's, labeled “AMU”;

- Wright (2000) method;

- the standard (Runkle) bootstrap method;



- Kilian (1998a) “bootstrap after bootstrap” method.°

The method proposed in this paper is not a Bonferroni method and has the
advantage of not relying on pretests, which may introduce pretest bias (see Cavanagh,
Elliott and Stock (1995)). To show the consequences of pretest biases, we also report
the coverage of confidence bands based on unit root pretests. They are constructed
as follows: if the ADF test rejects a unit root then the VAR is estimated in levels,
otherwise the VAR is estimated in first differences.

Figures 1 and 2 show one minus the empirical Monte Carlo coverage of the dif-
ferent methods for different DGP’s as a function of §. Its nominal value is 0.10. We
consider a variety of AR(2) representative processes. In addition, Table 1 reports ad-
ditional details on the percentage of samples in which the true value of the IRF lays
below and above the estimated confidence bands (ideally, these percentages should
be 0.05). Figure 1 shows that, for most methods, coverage is close to nominal when
there is no serial correlation other than the largest root. However, things change in
the presence of additional serial correlation. Here below we suummarize the main
findings.

Our method has coverage close to nominal in most situations. On the other hand,
the Andrews and Chen method quickly worsens as soon as the amount of serial cor-
relation (described by A2) becomes non-negligible, and the performance is usually
worse the bigger the horizon of prediction. This is not surprising: Andrews and Chen
(1994) reported that the IRFs based on their method were median biased and the
median bias increased with the horizon of prediction (see their Table 2, last DGP).
The method proposed by Wright (2000) is conservative, the reason being that it sim-
ulates the DGP over the confidence interval for “c¢” in order to get the IRFs and then
takes its maximum and minimum values’. We don’t have to simulate the IRFs. In

SWe focus on methods that are computationally easy. Also, we do not consider Sims and Zha
(1999), nor other Bayesian methods. A thorough investigation of Sims and Zha method is provided
in Kilian and Chang (2000). These authors show that Sims and Zha’s intervals, by classic criteria,
tend to have comparable accuracy to the bias-corrected bootstrap, which we already consider.

An alternative to Andrews and Chen (1994) is Hansen (1999) grid bootstrap. Gospodinov (2002)
and Rossi (2001a) already analyzed its small sample properties for confidence intervals for half-lives
and IRFs, so we do not include this method.

When implementing Kilian (1998), we use 100 bootstrap replications and Kilian’s "bootstrap after
bootstrap” short-cut rather than the ”bootstrap plus double bootstrap”.

We implement Andrews and Chen (1994) confidence intervals based on the appropriate quantiles
unbiased estimates of the parameters. In an appendix available upon request we also provide coverage
for IRF bands based on quantiles of the simulated IRFs constructed from unbiased estimates. We
are grateful to C. Murray for providing the codes for Andrews and Chen for the latter simulations.
The coverage properties based on the latter seem to be worse than those based on the former, and
this is the reason why we report the former.

"The results for the method proposed by Wright are obtained by calculating the gradient by using
analytical derivatives. This method makes the Monte Carlo simulations faster. We also experimented
confidence sets based on Monte Carlo simulations with random normal draws on the distribution
of the root other than the largest one. The latter had a slightly better performance, i.e. coverage



addition, Wright imposes a lower bound on “c” (zero), whereas we do not necessarily

impose that. Note that the bootstraps (both Runkle’s and Kilian’s) appear to work
quite well overall. However, Table 1 shows that the two-sided confidence interval is
highly non-symmetric and, thus, it might be unappealing if the objective is to obtain
median unbiased confidence bands (note that it is not possible to control which side
will never reject). Our method, instead, is median unbiased at all horizons. Further-
more, it is well known that the performance of the bootstrap worsens if the DGP
includes deterministic components, especially time trends. We emphasize that our
method is robust to that, as confidence intervals for ¢ constructed using Stock (1991)
method are invariant to deterministic component, and our method inherits that prop-
erty as well. Also, our method is an improvement over Kilian’s as his method is not
designed to work for roots equal to one or mildly explosive (i.e. his method relies on
bias estimates, the validity of which so far has only been established for the weakly
stationary case).

Figure 2 shows that estimating regressions in first differences leads to big size
distortions (see also Ashley and Verbrugge (2001)). One might hope that the use of
pretests to decide whether to use a specification in levels or first differences would
alleviate this problem. The Figure also shows how bad confidence bands based on
pretests can be. The pretest results that we report are obtained by a first stage unit
root test with size 0.05 and a second stage two sided confidence interval with coverage
0.95. If the two stages of the pretest were independent, the final coverage should be
roughly 0.90.% Finally, note from Table 1 that confidence intervals for IRFs of VARs
in levels are not median unbiased.

INSERT FIGURES 1 AND 2, AND TABLES 1 AND 2

The above evidence leads to the natural question: how “big” does the horizon
have to be in order to be considered “long”, in which case commonly used methods
fail and our procedure improves upon VARs in levels, first differences or pretests?

was close to nominal at sufficiently long horizons (0.6,0.8), although it was conservative at smaller
horizons. However, this variant was extremely computationally intensive, as it required a Monte
Carlo inside a Monte Carlo, so we preferred the former in our simulations. For a description of the
two methods see Hamilton (1994), pag. 336-337.

$We do not report results for Bonferroni confidence intervals, as they are not used in practice
for this kind of problems and they would be conservative anyway. We are aware of the fact that
the total coverage of the two stage procedure is only roughly 0.90, but, again, in practice nobody
really corrects for that anyway. Even if the researcher does a pretest, the size distortions persist.
We should note that most researchers, in practice, run the pretest but don’t take that into account
when choosing the coverage of the confidence interval for the IRF (i.e. if the desired coverage is 0.10,
the nominal coverage is chosen to be 0.90 independently of the size of the pretest). We chose not to
report this, as, in practice, it would make coverage properties even worse.



First, note that our procedure works quite well for delta bigger than or equal to 0.10,
which for a sample of 100 observations corresponds to an horizon equal to 10. This
provides a “rule-of-thumb” for evaluating the expected coverage of existing methods
relative to ours. Also, even for horizons as small as 6, our procedure is at least as
good as the pretest-based procedure, unless there is a large second root (see Figure
2a, upper panels). The point at which our procedure starts to improve relative to the
normal-based approximation depends somehow on the underlying serial correlation
in the data, but not on the frequency of the data, so the rule-of-thumb will be the
same for monthly or quarterly series. For example, consider a case in which we
are interested in the IRF at an horizon of 2 years when we have a sample of data
spanning 25 years. With quarterly data this situation corresponds to 6 = 0.08 (8
quarters over 7' = 100). With monthly data, this situation corresponds to a sample
of 300 observations but the same ¢ (24 months over 300). The “rule-of-thumb” will
be the same in both cases as the span of data is the same and, in fact, the power
of the unit root test used to construct the confidence interval for c¢ is the same (Ng
(1995), Perron (1991)). For medium to long horizon IRFs, the relevant parameter is
the magnitude of the horizon with respect to the sample size. A horizon of one year,
corresponds to § = 0.04 with 100 quarterly data spanning 25 years and to 6 = 0.12
with 100 monthly data spanning a little over 8 years. Although the horizon is the
same, we have much more information about the long run in 25 years of data than in
8 years of data. The “rule-of-thumb” tells us that our method works well relatively
to standard methods for situations in which the practitioner has data that cover a
limited span of years and he is interested in IRFs at the medium to long horizon.

Note that our method is not pointwise. In fact, it is based on a monotone trans-
formation of the confidence interval for the largest root of the process, so that if the
confidence interval for the root contains the true root with a pre-specified probability,
the confidence interval for the whole IRF will contain the true IRF trajectory with a
pre-specified probability. Table 2 reports one minus the coverage probability of the
whole IRF from 10 periods onwards for the methods discussed above. Our method
works pretty well.

As a robustness check we investigate the sensitivity of our method to the choice
of the lag length and the presence of deterministic terms. Figure 3 shows one minus
the actual coverage of IRFs confidence bands obtained by using the different lag
length selection procedures. The lag length procedures are AIC, BIC and Ng and
Perron (2001) “MAIC” based on GLS de-trending.® For comparison, we also report
results based on the true lag length (labeled “True lag”). The plots are shown as
a function of §, and for a representative DGP.!? The Figure shows that the use of

9We focus on AIC, BIC and MAIC for the following reasons. AIC and BIC are widely used. In
addition, Ivanov and Kilian (2003) show that BIC performs quite well at long horizons and small
samples relative to other methods. Ng and Perron (2001) suggest that MAIC performs better than
other criteria when the persistence in the data is high.

10n simulations not reported, but available upon request, we show that this result holds in general
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different methods to select the lag length does not make much difference in terms of
the empirical coverage. This result is due to the fact that the estimation of the lag
length matters for only two reasons. First, it enters in the estimation of © (L), but the
uncertainty over that is negligible relative to the uncertainty in the roots. Second, it
affects the confidence interval for ¢ through the order of the ADF regression, but this
turns out not to matter too much in terms of coverage. Table 3(a) shows the upper
and lower size of the tests for the case in which deterministic terms are included
in the DGP. The results indicate that the method is robust to the presence of a
deterministic time trend and that the “rule-of-thumb” for evaluating the expected
coverage of existing methods relative to ours is the same.

INSERT FIGURE 3, AND TABLE 3

We also compare the length of the confidence bands of the different methods
we considered above. In general, our method would perform much worse than the
other methods in terms of length. The reason is that we allow for mildly explosive
processes, for which the upper confidence band is very wide, whereas the other meth-
ods usually impose an upper bound equal to one on the largest root. To compare
these methods with ours, we therefore also impose an upper bound in our method.
Results are reported in Table 3(b). The Table shows that the length of our method
compares favorably to that of the other methods, especially when the process is highly
persistent. Note, however, that in general imposing an upper bound may generate
size distortions. The closer the root is to unity, the bigger the size distortions will be.
As explained before, our method avoids this problem, and will then be more robust
to possibly mildly non-stationary processes, whereas the methods proposed in the
literature impose stationarity and will not work if the true root is, say, 1.001.

To conclude this section, we provide an empirical application to the analysis of
output fluctuations. The question of whether output fluctuations are transitory has
attracted much attention in the literature since the early work by Campbell and
Mankiw (1987). While the persistence of the log of the real U.S. GDP process has
been already analyzed by using local-to-unity methods in Stock (1994), nobody to
date has analyzed its implications in terms of the effects of shocks at long horizons.
Rather than reporting confidence bands for IRFs, we focus on lower bounds of the
confidence intervals for the persistence of the shock. These are measured by how
many periods it takes the shock to be back to v — percent of the initial value (v = 0.5

(unless the process is very close to stationarity, in which case the MAIC criterion may lead to
undercoverage). Also, the DGP is AR; if the DGP were MA, AIC may perform worse; we thank Y.
Chang for this point.
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corresponds to the half-life of the shock, analyzed in Rossi (2001a)).!! Using Kilian’s-
style mean bias corrections for the slope parameters, it takes at least 7 periods to
halve the effect of a shock (y = 0.5) and 15 to reduce it to 25% (y = 0.25). Our
method shows that it takes at least 20 quarters to halve it, and 40 quarters to reduce
it to 25%. It is clear that the method proposed in this paper, which is robust to
mildly explosive as well as highly persistent processes, uncovers that the shocks to
real GDP are more persistent than it is commonly found in the literature. Note that
the other methods under-estimate the protracted effects of a shock to real GDP.

5. MULTIVARIATE IMPULSE RESPONSE FUNCTIONS WITH A POSSIBLE UNIT ROOT
In this section we compare the coverage and the length of confidence bands for IRF's
in multivariate models with a root local to unity. For ease of exposition we focus on a
bivariate VAR, where one variable has an exact unit root while the other has a large
root that is close to one.'> This corresponds to the common situation in which the
researcher “knows” that one variable is I(1) but is unsure about whether the other

variable is stationary or not (see for example Rogers (1999))!3.
The DGP is:

Wi = p+ pwip—1 + uit (10)

Wt = W2—1 + U

where p = 1 + 4. The dynamics of the model is determined by W (L) u; = ¢, where
C

U(L)=1— UL, and ¥ = [ 0(')2 093 } M Let @ = [ 1—67 (1) ] to see that this
simple model corresponds to equation (1). The elements of the spectral density at
frequency zero of w, 2 = v(1) tow (1)_1l, are denoted as wjj,i,j = 1,2. We
assume that ©%/2 is lower triangular so that shocks to wg; do not contemporaneously
affect wy;. Once the reduced form VAR is estimated, structural IRFs are computed
by using a causal ordering identification scheme.

"Data are obtained from the Bureau of Economic Analysis, U.S. Department of Commerce, and are
seasonally adjusted, in billions of fixed 1996 dollars, quarterly data from 1967:1 to 2002:4, mnemonic
“GDP96”. We allow for a deterministic time trend in the estimation. The lag length is determined
by Ng and Perron (2001) MAIC criterion, and it is equal to one. IRFs are obtained by using
Cholesky decompositions, so we measure the consequences of shocks measured in y/var (&) units,
where A (L)y: = uq is the estimated VAR and u: = Ape; the variance is a conditional one (i.e.
conditioned on (some) variables dated ¢t and (all) variables dated earlier).

12 A1l the results in this section easily extend to a multivariate setting with m — 1 exact unit roots
and one local to unity root. While we focus on linear VARs, the same conclusions would hold for
non-linear models up to a first order approximation.

13We show later that our method is robust to misspecification in the largest root of wo:.

Y For ease of exposition we consider ¥ diagonal. All the results in this section, with the exception
of equation (11) and (13) generalize to the case of W full.
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We obtain our IRFs in two steps. First, we construct a confidence interval for
¢; second, we use the simple closed-form formula for the IRFs at long horizons as
a monotone increasing function of c¢. Given the confidence interval for ¢, confidence
bands for the IRFs at long horizons are obtained from equation (7).

Regarding the first step, we construct confidence intervals for ¢ by inverting the
acceptance region of various tests for a unit root in wy: (i) the Augmented Dickey
Fuller (ADF) test; (ii) Elliott, Rothemberg and Stock (1996, ERS thereafter); (iii)
Elliott and Jansson (2000, EJ thereafter). These tests differ in their power properties,
and the most powerful tests will usualy lead to smaller confidence bands (often at the
cost of additional computations). ERS improves on ADF by optimally detrending
the data, and EJ improves on ADF by exploiting information on the stationary
covariate Awsg;. An important nuisance parameter that affects the power of the EJ
test is R? = wi'wiawqy wai, the square of the frequency zero correlation between the
innovation in Aws; and the innovation in the quasi difference of wis.

For this example, under assumptions (4) and (5), the structural IRFs at long
horizons are (up to an irrelevant o,(v/T)):

awt+h:Ath/2 - |: 606 0 :|

on, 0 1 w21wfll Waq

1/2
w 0
e g ] (11)

where wg 1 = woy — wglwl_llwlg = w99 (1 — R2). Thus:

811)1 1/2 811)1
t+h W / oct t+h

) =0 12

Oy 1 Oy (12)

Owatyh “1/2 172 ipn1/2 Owagp 1/2

. T W2iWip = Way (R ), — = Wy (13)
Onyy Ongy ’

The confidence intervals for the IRF are then estimated as in (9) over the confidence
interval for ¢. In this simple model, since ¥ is diagonal, Q'/2 is lower triangular, and
the structural shocks could also be identified imposing this long run restriction.

We proceed by comparing our method with those commonly used in the existing
literature in a Monte Carlo experiment. IRFs are commonly computed from VARs
estimated either in first differences or in levels. Usually, the decision between a VAR
in levels or in first differences is based on a unit-root pretest on wi¢. If the pretest
fails to reject a unit root at a 5% level, then the VAR is estimated with w1 in first
differences, otherwise wy; is used in levels. We report both cases in which the ADF
and the ERS tests are used in the pretest. Since pretesting is known not to work
well (Cavanagh, Elliott and Stock (1995)), we also report results for a VAR in levels
without pretesting. 1°

15 Given that we are pre-testing y; for a unit root, if the two stages were independent, the probability
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We simulated model (10) with 7" = 100 over 5000 Monte Carlo replications. The
VAR confidence intervals are approximated with 500 replications. R? = 0.5. The
95% confidence intervals of the VAR IRF's are computed by Monte Carlo simulations
under a normality assumption (cfr. Hamilton (1994), page 337).

Figure 4 shows the results. It displays one minus the coverage rate of various
confidence bands for IRF's for p = 1, 0.97, 0.90, 0.80. Panels (a) to (b) show that, like
in the univariate case, for short horizons our method has coverage that is less than
the nominal 90%, while confidence intervals from a VAR have less size distortions.
However, for values of 6 around 0.10 and above, the confidence intervals computed
with the normal approximation almost never contain the true IRF.

For p = 1, the results are close to the nominal level (0.10) for all methods, except
for the confidence intervals computed from the VAR in level, for which it is around
40%. This result reflects the bias in the estimation of p from a regression in levels.
Our method performs very well for various values of p: all three variants (ADF, ERS,
EJ) have coverage rates that are close to the nominal level across different values of p.
On the other hand, as p moves away from unity, confidence intervals computed from
the VAR in first differences start to behave poorly, with coverage that approaches
zero as the horizon increases. In fact, for large enough (though less than one) values
of p, both pre-tests have low power to reject the hypothesis of a unit root, and they
choose a VAR in first difference most of the times. As p moves further away from
unity, the pretests are able to reject the hypothesis of a unit root more often and
the coverage rate of the confidence bands computed from the VAR improves. As p
becomes very small (say p = .80), (4) is no longer a good approximation and the
coverage rate of our method starts to worsen: ADF and ERS have a coverage rate
around 60% while EJ has a coverage rate around 70%. Finally, note from Figure 4,
that using different pretests results in significantly different coverage properties. The
better coverage rate of ERS relative to ADF reflects the higher power of ERS test
against alternatives that are close to one.

As expected, the higher power of EJ test is reflected in the shorter median con-
fidence interval length in Table 4. For values of p that are close to one, the inversion
of EJ test produces confidence intervals that can be more than half the length of
confidence intervals obtained by inverting ADF. At the same time, confidence inter-
vals constructed inverting ERS and EJ are not symmetric (results are not reported).
The smaller length of the interval comes at the cost of not having a median unbiased
confidence interval. The interval length for VAR is also very small but, as we just
noted, having short intervals is irrelevant if the probability of including the true IRF

that the confidence interval contain the true IRF when the null of ¢ = 0 is true would be (1 —0.5)2.
Using 95% confidence intervals for the IRFs allows us to do a fair comparison of the empirical
coverage rates of the different methods. However, the two stages are not independent, because of the
correlation between the residuals (as in Cavanagh, Elliott and Stock (1995)), so the pre-test coverage
is not 0.90, even asymptotically. The ¢ used here is -7, as ERS and EJ recommend.
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is zero.

To check the robustness of our method to some of the assumptions in model,
we compute the coverage rates for all methods when model (10) is estimated even
though the second root is not exactly equal to one. Figure 5 shows that, when the
second root is close to one (0.99), our method still produces confidence intervals with
the desired coverage. Confidence intervals from VAR either in levels or in differences
have still bad coverage at long horizons. As the second root moves away from one,
ERS and ADF still performs well, while EJ shows significant size distortions. The
robust behavior of ERS and ADF is due to the fact that confidence bands obtained
inverting ERS and ADF use information only on wy;. Since we are assuming that ®
is diagonal (we are ruling out processes that are I(2) when p = 1, or “close to 1(2)”
when p is local to unity) the misspecification in the estimation of the second row of
© (I) does not affect the IRF for wy;. On the other hand, with the inversion of EJ
test, we are constructing confidence intervals for ¢ using the information contained
in Awsg. Since in this case wy; is not really I(1), we are using incorrect information
in calculating the test statistic. Overall, our method performs well even if the other
variables in the model are not exactly unit root.

INSERT FIGURES 4, 5 AND TABLE 4

It is possible to generalize the method and analyze the coverage of multivariate
confidence sets for IRFs when there is more than one root local to unity. We explore
this possibility in a bivariate VAR with two roots local to unity. Note, however, that
the method proposed in this paper can theoretically be applied to m local-to-unity
VARs, m > 2 (although it would be cumbersome in practice).

The confidence set is obtained as follows. First, we construct a one-sided joint
confidence set for C' with confidence level 0.95 by inverting Stock and Watson (1988)
test for common trends for the smallest eigenvalue of ®. The test statistic for common
trends is based on filtering the VAR to take into account the existence of serial
correlation (see Stock and Watson (1988)).16 Then, we project that set onto the
parameters of interest, the IRFs, which are monotone functions of C, by using (7).

6 Consider Stock and Watson (1988) test for k=2 versus m=1<k common trends (i.e. 2 vs. 1 unit
root). The system will have 2 unit roots if we do not reject k=2 common trends. So we take the
second largest root (the smallest root in our bivariate example, call it A2) and test whether it is equal
to one. If we accept the null hypothesis then we have two unit roots and if we reject (so it is less than
one) we may have either one or zero unit roots. One does not reject if (|[A2| — 1) T is small (since
(|A2] — 1) T is negative, one does not reject when it is bigger than the critical value). The statistic
based on filtering the data performs better for VARs than the version obtained by correcting the
estimate of ® for serial correlation, as noticed in Stock and Watson (1988). The confidence set is
based on a simulated grid with step 0.05, smoothed using quantile methods over a sparser grid with
steps 0.25. See also Stock and Watson (1996) and Rossi (2001b).
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The induced confidence set for the IRFs is the convex hull of the projected set. By
construction, any point on the IRFs should be contained within its confidence region
with probability 0.95.

Table 5 shows one minus the empirical coverage of the joint confidence set for
C (labeled “C”) and for the IRF (labeled “IRF”). Nominal coverage is 95%. The
empirical coverage is defined as the fraction of times in the Monte Carlo in which the
true values of C or the IRF are inside the confidence set. The DGP is a bivariate

VAR with two lags: (I —WL)(I — ®L)w; = Ape; where Ay = (1) Oi4 > , U=

< Vi Vi ), d = < o 0 ) The column labeled “IRF” reports the joint
Vo1 U 0 ¢

confidence set for shock 1 to variable 1 and shock 2 to variable 2. As the Table shows,
our method results in confidence sets whose coverage is sometimes too small, but the
performance improves as the horizon increases. Note that coverage worsens very
quickly when the process approaches stationarity, much faster than in the univariate
case. The poor performance that we observe for large values of C' is due to the fact
that we impose the upper bound in the one-sided confidence set.

Unfortunately, the behavior of the confidence bands seems quite erratic and more
efficient methods for conducting simulations are needed in the multivariate context
with more than one root close to unity.

INSERT TABLE 5

6. A METHOD ROBUST AT SHORT HORIZONS
While the main method proposed in this paper applies to long horizons, namely
horizons bigger than 6 or 10, it is also possible to refine it in order to make it robust
also to short horizons. We discuss one such method in this section. The method is
slightly more complicated than the method proposed above, but still easy and very
fast to use. However, it builds on Bonferroni methods, so it will be conservative,
especially at short horizons. It will also not be median unbiased, again especially at
shorter horizons.

The method is as follows:

(a) first, we compute 90% confidence intervals for ¢ by inverting an ADF test.
Using the confidence interval for ¢, (cr, cy), we compute e“® and ev?;

(b) second, we estimate a VAR in first differences and construct a 90% confidence
interval for ©; by using the same Monte Carlo approximations to the delta method
described in section 4;

(c) for each limit of the confidence interval for ©; at each horizon, we compute
et @, and ev? O;;

(d) the overall confidence interval is then obtained as: (min; e“2% ©;; max; e

©i);

Cyd
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By the Bonferroni inequality, the confidence interval should have a coverage of
at least 90% at each horizon h. Note that, by construction, this method is now
pointwise. Wright (2000) also proposes a method based on Bonferroni inequalities.
The difference with his method is that we do not re-estimate ©; associated to different
values of ¢ in (a).

We perform a simple Monte Carlo experiment to evaluate the performance of this
method relative to the one proposed in the main part of the paper. The DGP is the
same as described in (10), where p = 0.97, T' = 100. The nominal coverage is 0.90.
Table 6 shows the results. The new method is labeled “Small h”. For comparison, we
also report the same probabilities based on our “Big h” method. Subscripts “L.” and
“R” are used to denote the empirical rejection probabilities of the true IRF laying
respectively on the left and on the right of the proposed confidence interval, which
should ideally be 0.05. Both methods are based on confidence intervals obtained by
inverting a simple ADF regression test for unit root.

Note that the “Small h” method improves the empirical rejection probabilities at
short horizons relative to the “Big h” method. However, it is not median unbiased at
short horizons, and slightly conservative. Nevertheless, its overall coverage properties
are quite good at every horizon.

INSERT TABLE 6

7. AN EMPIRICAL APPLICATION TO EXCHANGE RATE DYNAMICS

As an empirical application, we analyze the nominal versus real sources of fluctua-
tions in real and nominal exchange rates. There is a large literature on this topic.
Eichenbaum and Evans (1995) influential paper use an identification a la Sims; Clar-
ida and Gali (1994), Lastrapes (1992) and Rogers (1999), among others, impose a
long-run identification. Different types of identification methods will result in differ-
ent restrictions on © (I) Ap in (7) and therefore will result in different IRF. Although
our method works regardless of the type of indentification method used, here we will
focus on a short run identification based on Wold ordering.!'”

We focus on Eichenbaum and Evans (1995) influential paper, which has been
used for illustrative purposes before (e.g. Kilian (1998b)). We use the ratio of the
log of non-borrowed reserves to the log of total reserves as a measure of the policy

1" Traditionally, Wold ordering identification has been imposed on VARs in levels whereas long-
run identifications have been imposed on VARs in first differences. It is unclear how much of the
differences in the results is due to the different identification procedures and how much is due to
the maintained assumption on the order of integration of the variables (which is different in the two
cases). By using our approach, we would be able to distinguish how much of these differences are
really due to the different economic identifications.
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instrument. The five-variables VAR also includes U.S. industrial production, U.S.
CPI, a measure of the difference between U.S. and foreign short-term rates and the
real exchange rates.

Data for the U.S. (industrial production, 3 months T-bill rates, Total Reserves
and Non Borrowed Reserves with extended credit) and bilateral monthly nominal
exchange rates are from the Federal Reserve Database. Data for Industrial Production
for each foreign country and CPI for all countries including the U.S. are from the
IFS database (line 66 and line 64 respectively). Short term money markets rates
for each foreign country are also from the IFS database. The starting date for the
sample is 1973:1 with different ending dates for each country (2001:12 for Germany,
2002:9 for Japan and the United Kingdom and 2001:5 for Italy). All variables are in
logarithms except for the interest rates. Here, an increase in the real exchange rates
represents a depreciation of the U.S. real exchange rate. The structural IRFs are
calculated using the Wold ordering: output, prices, reserves, interest rate differential
and real exchange rate. An exogenous contractionary monetary shock is identified as
the component of a negative innovation in NBRX that is orthogonal to prices and
output.

Table 7 provides some descriptive statistics and results of various tests for unit
roots on the real exchange rate. The evidence suggests that the latter is a highly
persistent variable and, for most countries, we cannot reject a unit root. Figure
6 compares various confidence intervals for the response of the real exchange rate
to a contractionary monetary policy shock for different countries. The confidence
bands from a VAR with all variables in levels (solid line with diamonds) and with all
variables in first differences (dotted line with stars) are computed by simulation. The
two outer solid lines are the confidence bands computed with our method inverting
ERS test for a unit root on the real exchange rate and the middle solid line is the
median unbiased estimate of the IRF.!® As in Eichenbaum and Evans (1995) we use
6 lags in the VAR estimation.

Some interesting results emerge from Figure 6. Note that the confidence bands
for VARs in first differences show more persistent effects than those based on VARs
in levels, as intuition may suggest. In fact, the former may remain bounded away
from zero (as for Japan and the U.K.), showing that the effects of the shock are much
more persistent and may never disappear, even in the long run. On the other hand,
the confidence bands for the VAR in levels include zero after a few quarters. Our
method is somewhere in the middle, but in general it shows that shocks are more
persistent than a VAR in levels would predict. As in Eichenbaum and Evans (1995),
a contractionary shock to U.S. monetary policy leads to a persistent appreciation of
the real exchange rates for Germany, Japan, and UK. For Italy, both the VAR in first

'8 Although inverting ERS test produce confidence bands that are less precise than the ones ob-
tained by inverting EJ test, the simulations in the previous section show that EJ is also less robust
to the true DGP of the other variables.
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differences and in levels suggest an initial appreciation that dies out in the long run,
while the inversion of ERS suggests a small, but persistent, depreciation of the real
exchange rate. Although the approximation used in our method is not too informative
about the behavior of the real exchange rate at short horizons, in our results the dollar
does not depreciate after the initial appreciation. Our confidence intervals suggest a
more persistent real exchange rate than what a VAR in levels would suggest, with a
dollar not depreciating even after a long period of time for most currencies. In fact,
for Germany, Japan and UK, the dollar is still not depreciating even after 4 years (48
months). As in the previous example, our method suggest a slightly less persistent
response of the real exchange than that estimated with a VAR in first difference.

INSERT FIGURE 6 AND TABLE 7

8. CONCLUSIONS
Whether shocks have long run effects on economic variables, and how persistent these
effects are, is a highly debated issue. Results are sensitive to the order of integration
of the variables and ad-hoc robustness checks that lack theoretical justifications are
routinely performed to verify the empirical conclusions.

We propose a simple, yet rigorous, method to estimate the long run effects of the
shocks and the uncertainty around these in a coherent way. The method has the
advantage of controlling coverage over the whole IRF trajectory at long horizons (i.e.
it is not pointwise). With this method, researchers do not have to take a stand on
whether the process is I(1) or I(0) before doing inference. Thus, the method provides a
feasible alternative to unit root pre-tests, which we show imply considerable coverage
distortions.

By using this method, we find that conventional methods that rely on estimation
in levels tend to underestimate the persistence of shocks in small samples, and, in
accordance with recent evidence by Rogers (1999), that monetary shocks have effects
that are more persistent than previously thought.
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10. APPENDIX
The general model (1) nests some popular models. Let v = [y}, y2i], where ya
represents the cointegrating vector.
Case 1: When the researcher knows the cointegration vector a-priori and yi4 is
known to be I(1), then

Imxm 0m><1 Im><m 0m><1
S K L e ol L
This is the DGP considered in Elliott, Jansson and Pesavento (2002). In this case it
is possible to use our method to invert their point optimal invariant test to obtain
IRF's bands.

Case 2: When yj; is local to unity and y9; is stationary, we obtain the frame-
work used in Elliott (1998). This is equivalent to our DGP where 1 + £ with
C = diag(cy, c2, ...Cp). corresponds to the m local to unity roots for yi;, while A; is
the largest but stationary root for the cointegration vector yo; = wo; — 7wy, which
can be zero in the trivial case in which ©(L) = I and y is a martingale difference
sequence. In this case:'?

B I-i-% Omx1 | . | Imxm  Omx1
=l vty &

Case 3: When the researcher doesn’t know whether both yi; or yo; have a unit
root (i.e. there is no cointegration) the model becomes (see Rossi (2001)):

B I—i—% Omx1 . | Imxm  Omx1
O T I il (16)

Case 4: If the researcher knows that there is no cointegration, but he is not sure
whether one variable has a unit root or not, while he knows that the other m variables
are stationary, we can write the model in the framework of Elliott and Jansson (2000):

A Omx1 1 Omx1
A= mxm mX . _ mxm m X 1

[ Otxm 1+F |’ v 0 1 (17)
where A = diag (A11,M\12, ...A1m) are the m largest (but stationary) roots of the sta-
tionary variables yi;. In this case, it is possible to invert a point optimal test to
compute IRFs for the variable that is local to unity.

YNote that the quality of the approximation used in this paper depends on whether \; is close
to unity. If A1 is very small, the asymptotic approximations used in this paper will not be accurate.
The same comment holds for case 4 below.



Table 1(a): Comparison of coverage of IRF confidence bands
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Big h AMU Wright Boot Kilian

0 Ao 0 low up low up low up low  up low up
0.99 0 .05 0.06 0.06 0.12 0.41 0.00 0.06 0.01 0.17 0.02 0.11
0.1 0.05 0.05 0.07 0.27 0.00 0.06 0.00 0.22 0.01 0.13

0.2 0.05 0.05 0.07 0.10 0.01 0.05 0.00 0.23 0.01 0.13

0.3 0.05 0.05 0.07r 0.07 0.03 0.04 0.00 0.23 0.01 0.13

0.5 0.05 0.05 0.07 o0.07 0.05 0.05 0.00 0.23 0.01 0.13

04 .05 0.07 015 0.16 046 0.01 0.04 0.01 0.14 0.03 0.08
0.1 0.05 0.07 0.05 0.38 0.00 0.06 0.00 0.20 0.01 0.10

0.2 005 006 0.02 0.19 0.00 0.06 0.00 0.23 0.00 0.11

0.3 0.06 0.06 0.02 0.08 0.00 0.05 0.00 0.22 0.01 0.12

0.5 006 006 0.02 0.03 0.03 0.04 0.00 0.22 0.01 0.12

08 .05 032 0.09 047 0.32 0.04 0.01 0.00 0.18 0.02 0.09
0.1 0.06 018 0.14 0.49 0.01 0.06 0.00 0.22 0.02 0.09

0.2 0.04 0.09 0.01 047 0.00 0.09 0.00 0.26 0.01 0.10

0.3 0.05 0.07 0.00 041 0.00 0.08 0.00 0.26 0.01 0.11

0.5 0.06 0.06 0.02 0.25 0.00 0.05 0.00 0.22 0.01 0.11

0.95 0 .05 0.04 0.06 0.04 0.11 0.00 0.04 0.01 0.14 0.02 0.11
0.1 0.04 0.06 0.03 0.05 0.02 0.05 0.00 0.16 0.01 0.12

0.2 005 0.06 0.04 0.04 0.04 0.05 0.00 0.15 0.01 0.12

0.3 0.05 0.06 0.04 0.04 0.05 0.05 0.00 0.15 0.01 0.12

0.5 0.05 0.06 0.05 0.04 0.06 0.06 0.00 0.15 0.01 0.12

04 .05 0.03 0.08 0.05 0.24 0.00 0.04 0.01 0.13 0.03 0.09
0.1 0.04 0.06 0.01 0.04 0.00 0.03 0.00 0.16 0.01 0.11

0.2 005 006 0.01 0.02 0.03 0.04 0.00 0.15 0.01 0.11

0.3 0.06 0.06 0.02 0.02 0.05 0.04 0.00 0.15 0.01 0.11

0.5 0.06 0.06 0.02 0.02 0.06 0.05 0.00 0.14 0.01 0.10

0.8 .05 0.18 0.09 025 0.29 0.01 0.02 0.00 0.15 0.03 0.08
0.1 0.03 0.12 0.02 0.29 0.00 0.04 0.00 0.19 0.02 0.09

0.2 0.04 0.09 0.00 0.02 0.00 0.02 0.00 0.18 0.01 0.11

0.3 0.05 0.08 0.00 0.00 0.01 0.02 0.00 0.15 0.01 0.12

0.5 0.07r 0.07 0.00 0.00 0.04 0.02 0.00 0.11 0.01 0.08

1 0 .05 005 009 016 0.56 0.01 0.07 0.00 0.16 0.02 0.10
0.1 005 006 010 0.58 0.00 0.14 0.00 0.23 0.01 0.12

0.2 005 0.06 0.06 0.62 0.00 0.22 0.00 0.26 0.01 0.13

0.3 006 006 0.05 0.66 0.00 0.27 0.00 0.26 0.01 0.13

08 .05 035 0.10 0.59 0.31 0.06 0.01 0.00 0.18 0.02 0.09
0.1 0.08 021 031 0.52 0.01 0.05 0.00 0.22 0.02 0.10

0.2 0.04 0.12 0.08 0.61 0.00 0.10 0.00 0.28 0.02 0.10

0.3 0.04 0.08 0.03 0.67 0.00 0.14 0.00 0.30 0.01 0.11




Table 1(b): Comparison of coverage of IRF confidence bands
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Ao 6  Level Pretest Diff Level Pretest Diff

low up low up low up low up low up low up
p=0.99 p= 097
0 .05 0.02 0.13 0.04 0.06 0.10 0.03 0.01 0.13 0.11 0.06 0.29 0.00
0.1 0.02 0.12 0.10 0.06 0.22 0.01 0.02 0.11 0.45 0.05 0.90 0.00
0.2 0.02 0.11 0.34 0.05 0.63 0.00 0.02 0.10 0.55 0.05 1.00 0.00
0.3 0.02 0.11 0.59 0.05 0.95 0.00 0.02 0.10 0.55 0.05 1.00 0.00
0.5 0.02 0.11 0.65 0.05 1.00 0.00 0.02 0.10 0.55 0.05 1.00 0.00
04 .05 0.02 0.12 0.03 0.06 0.06 0.04 0.02 0.13 0.05 0.06 0.12 0.02
0.1 0.02 0.13 0.05 0.06 0.11 0.02 0.01 0.13 0.19 0.06 0.46 0.00
0.2 002 0.12 0.15 0.06 0.32 0.01 0.01 0.11 0.54 0.06 0.99 0.00
0.3 0.02 0.11 0.33 0.05 0.61 0.00 0.01 0.10 0.55 0.06 1.00 0.00
0.5 0.02 0.11 0.62 0.05 0.97 0.00 0.02 0.10 0.55 0.05 1.00 0.00
0.8 .05 0.11 0.05 0.09 0.02 0.14 0.03 0.08 0.05 0.08 0.02 0.15 0.02
0.1 0.03 0.12 0.03 0.06 0.06 0.06 0.02 0.12 0.04 0.05 0.10 0.03
0.2 0.02 0.14 0.04 0.06 0.09 0.04 0.01 0.11 0.14 0.06 0.36 0.01
0.3 0.02 0.14 0.07 0.06 0.17 0.02 0.01 0.10 0.41 0.05 0.81 0.00
0.5 002 0.12 0.22 0.056 0.45 0.01 0.01 0.08 0.56 0.04 1.00 0.00
p = 0.95 p= 1

0 .05 0.01 0.13 0.21 0.07 0.62 0.00 0.02 0.13 0.03 0.07 0.06 0.06
0.1 0.01 0.10 0.43 0.06 1.00 0.00 0.02 0.12 0.03 0.07 0.06 0.06
0.2 0.02 0.09 0.43 0.05 1.00 0.00 0.02 0.11 0.02 0.07 0.06 0.06
0.3 0.02 0.09 0.44 0.05 1.00 0.00 0.02 0.11 0.02 0.07 0.06 0.06
0.5 0.03 0.09 0.44 0.05 1.00 0.00 0.02 0.11 0.02 0.07 0.06 0.06
0.4 .05 0.01 0.13 0.05 0.07 0.21 0.01 0.03 0.12 0.03 0.05 0.05 0.06
0.1 001 0.11 0.34 0.06 0.88 0.00 0.02 0.14 0.02 0.07 0.05 0.06
0.2 0.02 0.10 0.43 0.05 1.00 0.00 0.02 0.14 0.02 0.07 0.05 0.06
0.3 0.02 0.10 0.44 0.05 1.00 0.00 0.02 0.14 0.02 0.08 0.05 0.06
0.5 0.02 0.09 0.44 0.05 1.00 0.00 0.02 0.15 0.02 0.08 0.05 0.06
0.8 .05 0.07 0.06 0.06 0.02 0.17 0.02 0.11 0.04 0.10 0.02 0.14 0.03
0.1 0.02 0.12 0.05 0.06 0.18 0.02 0.02 0.13 0.03 0.06 0.04 0.07
0.2 0.01 0.12 0.31 0.06 0.78 0.00 0.02 0.17 0.01 0.09 0.03 0.08
0.3 0.02 0.10 0.47 0.05 1.00 0.00 0.01 0.16 0.01 0.09 0.03 0.08
0.5 0.02 0.08 0.47 0.04 1.00 0.00 0.02 0.14 0.01 0.09 0.03 0.08
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Table 2: Comparison of coverage of whole IRF trajectory

0 Ao Bighy Bighy AMU;, AMUy Wright; Wrighty Booty Booty

1 0 0.06 0.06 0.11 0.71 0.00 0.42 0.00 0.29
0.4 0.07 0.09 0.10 0.73 0.01 0.34 0.00 0.31

0.8 0.09 0.22 0.31 0.81 0.01 0.21 0.00 0.37

099 0 0.07 0.06 0.10 0.28 0.05 0.09 0.00 0.26
0.4 0.08 0.07 0.06 0.39 0.03 0.10 0.00 0.29

0.8 0.09 0.17 0.14 0.50 0.00 0.10 0.00 0.33

095 0 0.06 0.06 0.05 0.05 0.06 0.06 0.00 0.19
0.4 0.07 0.06 0.03 0.03 0.06 0.05 0.00 0.19

0.8 0.08 0.12 0.02 0.28 0.05 0.05 0.00 0.27
Kiliany, Kilianyy Level;, Levelyy Pretest;, Pretestyy  Diff;,  Diffyy

1 0 0.01 0.15 0.04 0.15 0.05 0.06 0.02 0.07
0.4 0.02 0.14 0.04 0.17 0.04 0.07 0.02 0.08

0.8 0.03 0.16 0.04 0.21 0.05 0.08 0.03 0.09

099 0 0.01 0.15 0.03 0.13 1.00 0.01 0.64 0.06
0.4 0.02 0.15 0.04 0.17 0.97 0.02 0.61 0.07

0.8 0.03 0.15 0.04 0.19 0.43 0.05 0.23 0.08

095 0 0.01 0.15 0.03 0.12 1.00 0.00 0.42 0.06
0.4 0.02 0.14 0.03 0.13 1.00 0.00 0.44 0.07

0.8 0.03 0.15 0.05 0.18 1.00 0.02 0.49 0.09

Table 3(a): Robustness to a deterministic time trend
YD) p= 099 p= 097 p= 095 p= 0092
0 0.05 0.06 0.06 0.07 0.03 0.06 0.03 0.05 0.03
0.1 0.07 0.04 0.07 0.04 0.06 0.04 0.07 0.04
0.15 0.07 0.05 0.07 0.05 0.07 0.04 0.07 0.04
0.2 0.07 0.05 0.07 0.05 0.07 0.05 0.08 0.04
0.3 0.07 0.05 0.07 0.05 0.07 0.05 0.08 0.04
0.4 0.07 0.05 0.07 0.05 0.07 0.05 0.08 0.04
0.2 0.05 0.05 0.08 0.06 0.05 0.05 0.03 0.05 0.04
0.1 0.05 0.04 0.06 0.05 0.06 0.04 0.06 0.04
0.15 0.06 0.04 0.06 0.05 0.06 0.04 0.07 0.04
0.2 0.06 0.05 0.06 0.05 0.07 0.04 0.07 0.04
0.3 0.06 0.05 0.06 0.05 0.07 0.04 0.08 0.04
0.4 0.06 0.05 0.06 0.05 0.07 0.04 0.08 0.04
0.6 0.05 0.07 0.16 0.07 0.11 0.05 0.09 0.04 0.07
0.1 0.05 0.08 0.05 0.05 0.05 0.05 0.04 0.06
0.15 0.06 0.05 0.06 0.05 0.05 0.05 0.05 0.05
0.2 0.07 0.05 0.06 0.05 0.06 0.05 0.06 0.05
0.3 0.07 0.05 0.06 0.05 0.07 0.05 0.07 0.05
04 0.07 0.05 0.07 0.05 0.07 0.05 0.08 0.05




Table 3(b): Comparison of length of confidence intervals

p A2 6 Bighg AMU Wright Boot Kilian Level Pretest Diff

099 0 0.1 0.58 0.39 0.81 0.68 0.75 0.63 0.54 0.35
0.2 0.75 0.56 0.90 0.92 1.19 0.97 0.66 0.35
0.3 0.82 0.65 0.93 1.04 1.61 1.29 0.77 0.35
0.5 0.87 0.73 0.96 1.27 2.75 2.08 1.06 0.35

04 0.1 0.95 0.70 1.83 1.22 1.39 1.12 1.20 0.89
0.2 1.23 1.06 1.87 1.60 2.20 1.63 1.40 0.90
0.3 1.34 1.22 1.85 1.79 3.01 2.14 1.58 0.90
0.5 1.42 1.32 1.79 2.16 5.43 3.37 2.08 0.90

0.8 0.1 2.64 1.20 4.96 2.94 3.43 3.21 3.99 3.27
0.2 3.39 291 7.56 4.87 6.97 5.16 6.49 5.05
0.3 3.68 — 8.41 5.66  10.10  6.73 8.02 5.83
0.5 3.88 — 8.55 6.50 18.20 10.15 10.28  6.44

097 0 0.1 0.64 0.52 0.78 0.65 0.71 0.66 0.58 0.34
0.2 0.81 0.69 0.89 0.76 0.98 0.92 0.69 0.34
0.3 0.87 0.75 0.92 0.76 1.17 1.10 0.78 0.34
0.5 0.90 0.77 0.93 0.76 1.64 1.50 1.01 0.34

04 0.1 1.04 0.93 1.54 1.16 1.30 1.12 1.20 0.86
0.2 1.31 1.26 1.64 1.32 1.78 1.53 1.38 0.87
0.3 1.41 1.35 1.66 1.32 2.14 1.81 1.50 0.87
0.5 1.47 1.37 1.64 1.32 3.13 2.48 1.85 0.87

0.8 0.1 2.74 1.88 4.52 2.76 3.20 2.98 3.72 3.10
0.2 3.46 3.97 6.21 4.15 5.84 4.58 5.72 4.55
0.3 3.72 4.08 6.47 4.31 7.52 5.65 6.77 5.12

095 0 0.1 0.69 0.59 0.80 0.61 0.67 0.65 0.61 0.33
0.2 0.84 0.71 0.89 0.63 0.80 0.81 0.69 0.33
0.3 0.88 0.72 0.91 0.58 0.86 0.88 0.73 0.33
0.5 0.89 0.69 0.91 0.49 1.02 1.05 0.87 0.33

04 0.1 1.10 1.05 1.47 1.08 1.21 1.10 1.19 0.83
0.2 1.34 1.31 1.57 1.09 1.45 1.35 1.31 0.83
0.3 1.41 1.34 1.57 0.99 1.56 1.45 1.37 0.83
0.5 1.44 1.30 1.55 0.85 1.93 1.73 1.59 0.83

0.8 0.1 2.75 2.16 4.19 2.57 2.98 2.78 3.47 2.94
0.2 3.35 3.89 5.42 3.53 4.86 4.06 5.08 4.15
0.3 3.52 3.75 5.48 3.36 5.58 4.65 5.69 4.57
0.5 3.61 3.39 5.07 2.82 6.95 5.22 6.20 4.81




Table 4: Median confidence interval length

6 ADF ERS EJ  Pret  ADF Pret ERS Level

c=0
0.05 0.487 0.362 0.302 0.5174 0.520 0.531
0.1 0.855 0.698 0.583 0.523 0.529 0.705
0.15 1.172 1.038 0.854 0.520 0.527 0.862
0.2 1.499 1.422 1.143 0.519 0.526 1.007
0.3 2.300 2.351 1.777 0.518 0.525 1.321
c=-3
0.05 0.544 0.443 0.333 0.513 0.536 0.539
0.1 0.904 0.725 0.562 0.514 0.546 0.726
0.15 1.198 0.966 0.699 0.508 0.533 0.854
0.2 1.484 1.187 0.796 0.505 0.525 0.961
0.3 2.133 1.558 0.924 0.505 0.522 1.194
c=-10
0.05 0.570 0.472 0.442 0.488 0.578 0.509
0.1 0.856 0.608 0.562 0.466 0.614 0.607
0.15 1.048 0.640 0.570 0.441 0.542 0.592
0.2 1.190 0.615 0.544 0.432 0.503 0.573
0.3 1.417 0.527 0.452 0.430 0.483 0.595
c=-20
0.05 0.464 0.453 0.457 0.499 0.537 0.450
0.1 0431 0.415 0.542 0.381 0.438 0.372
0.15 0.341 0.321 0.524 0.301 0.313 0.263
0.2 0.255 0.237 0.478 0.248 0.254 0.208

0.3 0.139 0.126 0.372 0.189 0.192 0.155




Table 5: Multivariate model with two local-to-unity roots
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0.1
0.2
0.3
0.4
0.5
0.1
0.2
0.3
0.4
0.5
0.1
0.2
0.3
0.4
0.5
0.1
0.2
0.3
0.4
0.5
0.1
0.2
0.3
0.4
0.5
0.1
0.2
0.3
0.4
0.5

111=0 P19=0 1hgy;=0 1h9y=0

P1,=0.2

P19=0  1P31=0 1h9=0.3

¢11
0.98

0.97

0.96

G2
0.97

0.96

0.95

0.96

0.95

0.95

C
0.079

0.067

0.123

0.132

0.155

0.181

IRF
0.268
0.062
0.012
0.002

0
0.219
0.036
0.025
0.026
0.026
0.207
0.076
0.059
0.055
0.057
0.246
0.124
0.077
0.062

0.06
0.154
0.072
0.069
0.072
0.072
0.285
0.174
0.142
0.128

0.12

¢11
0.98

0.97

0.96

Pa2
0.97

0.96

0.95

0.96

0.95

0.95

C
0.092

0.101

0.16

0.119

0.155

0.163

IRF
0.372
0.154

0.04
0.006
0.001
0.324
0.103
0.032

0.02
0.019
0.292
0.099
0.048
0.042
0.042
0.326
0.152
0.097
0.065
0.059
0.263
0.078
0.072
0.075
0.077
0.308
0.164
0.122
0.105
0.098




Table 6: Short and long horizon comparison
0 Small hy Small hg Small h Big hy Bighgr Bigh

0.01 0.016 0.08 0.096 0.244 0.388  0.633
0.02 0.003 0.057 0.06 0.101 0.342  0.443
0.03 0.001 0.041 0.042 0.068 0.238  0.306
0.04 0.001 0.037 0.038 0.057 0.164 0.221
0.05 0.002 0.035 0.036 0.049 0.114  0.163
0.06 0.002 0.036 0.039 0.048 0.086  0.135
0.07 0.004 0.038 0.042 0.047 0.072  0.119
0.08 0.005 0.041 0.046 0.046 0.067  0.113
0.09 0.007 0.042 0.049 0.046 0.064 0.11
0.10 0.01 0.043 0.053 0.047 0.063 0.11
0.15 0.02 0.049 0.069 0.049 0.062 0.111
0.2 0.028 0.051 0.079 0.05 0.061  0.111
0.25 0.033 0.053 0.086 0.051 0.061  0.111
0.3 0.037 0.054 0.092 0.052 0.06 0.112

Table 7: Unit root tests for real exchange rates
(short-run identification example)
GER JAP UK ITA
ADFT 1542 -1.850 -2470 -2.310
ERS! 5611 27102  4.755  5.820

EJ 39.389 34.303 37.034 81.453

R? 0.134 0.202 0.192 0.126

EJ 5% cv. 3454 3545 3.530 3.444
N. lags 6 6 6 6

(1) The 5% and 2.5% critical values for ADF are, respectively, -2.890 and -3.170.
(1) The 5% and 2.5% critical values for ERS are, respectively, 3.11 and 2.47.
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Figure 1(a) One minus coverage rates of various methods for AR(2) DGPs.
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Figure 1(b) One minus coverage
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rates of various methods for AR(2) DGPs.
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Figure 2(a) One minus coverage rates of various methods for AR(2) DGPs.
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Figure 2(b) One minus coverage rates of various methods

AR(2), ho=0.95; lambda2=0
o

for AR(2) DGPs.
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Figure 4(a) : one

minus coverage rate for various values of p, R = 0.5

one minus coverage rate for p =1.00
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Figure 4(b) : one minus coverage rate for various values of p, R? = 0.5

one minus coverage rate for p =0.90
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Figure 5 : one minus coverage rate for various values of p = 0.90, R? = 0.5

probability

probability

for different values of the second root
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second root =0.99
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Figure 6(a) : Confidence Intervals for a response of ¢ to a monetary shock'
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1The confidence bands are the following: VAR levels (solid line
with diamonds), ERS (solid line - the central, thickest line is the median
unbiased IRF estimate), VAR first differences (dotted line with stars).
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Figure 6(b) : Confidence Intervals for a response of ¢; to a monetary shock'
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1The confidence bands are the following: VAR levels (solid line
with diamonds), ERS (solid line - the central, thickest line is the median
unbiased IRF estimate), VAR first difference (dotted line with stars).





