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This article is related to the large recent literature on Phillips curves in sticky- 
price equilibrium models. It differs in allowing for the degree of price stickiness 
to be determined endogenously. A closed-form solution for short-term inflation 
is derived from the dynamic stochastic general equilibrium (DSGE) model with 
state-dependent pricing developed by Dotsey, King and Wolman. This 
generalized Phillips curve encompasses the New Keynesian Phillips curve 
(NKPC) based on Calvo-type price-setting as a special case. It describes 
current inflation as a function of lagged inflation, expected future inflation, 
current and expected future real marginal costs, and current and past 
variations in the distribution of price vintages. We find that current inflation 
depends positively on its own lagged values giving rise to intrinsic persistence 
as a source of inflation persistence. Also, we find that the state-dependent 
terms (that is, the variations in the distribution of price vintages) tend to 
counteract the contribution of lagged inflation to inflation persistence. 
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1 Introduction

In recent years, dynamic general equilibrium models with nominal rigidities have become the

standard tool to analyze the effects of monetary policy on output and prices. These models

typically assume that firms choose their prices optimally, while the timing of their price changes

is exogenous (time-dependent pricing). The assumption of time-dependent pricing is often useful

because it makes a model easier to work with. It implies however that firms do not adjust the

time pattern of their price adjustments in response to changes in macroeconomic conditions. This

is hardly plausible if we think of an environment with shifts in trend inflation, for example, and

therefore it may limit the value of these models for monetary policy analysis. As an alternative,

Dotsey et al. (1999) have developed a dynamic general equilibrium model with endogenous

timing of price changes. Building on earlier contributions by Sheshinski and Weiss (1983) and

Caplin and Leahy (1991), they describe an economy where firms’ time pattern of price changes

responds to the state of the economy (state-dependent pricing). Recent contributions to this

strand of the literature include models emphasizing the role of sticky pricing plans (Burstein

(2005)) and idiosyncratic marginal cost shocks (Golosov and Lucas (2003).

The analysis of monetary policy in dynamic general equilibrium models is usually performed

by numerical methods. Nevertheless, it is useful for many purposes to have a closed-form solution

for short-term inflation. In the case of time-dependent pricing, a structural equation relating

inflation dynamics to the level of real marginal costs (or another measure of real activity) has

been derived from the Calvo (1983) model. Under zero trend inflation, it relates inflation to

real marginal costs and the expectation of next period’s inflation. This is known as the New

Keynesian Phillips curve (NKPC).1

In this paper, we derive a closed-form solution for short-term inflation in the Dotsey et al.

(1999) model. The resulting equation is more general than the NKPC, and it nests the latter

as a special case. It relates inflation to lagged inflation, expected future inflation, current and

expected future real marginal costs, and current and past variations in the distribution of price

vintages. The number of leads and the size of the coefficients are endogenous and depend on

1See Woodford (2003) for a detailed exposition.
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the level of steady-state inflation and on firms’ beliefs about future adjustment costs associated

with price changes. This structural equation is referred to in this paper as the state-dependent

Phillips curve (SDPC).

In contrast to the NKPC, lagged inflation terms affect current inflation in the SDPC. This

is an interesting feature since estimates by Gaĺı and Gertler (1999) and many others suggest

that the NKPC extended by a lagged inflation term provides a better description of inflation dy-

namics than the purely forward-looking NKPC. There are various ways to derive a specification

with lagged inflation beyond the SDPC. Three approaches have been considered in the recent

literature. First, Gaĺı and Gertler (1999) extend the Calvo (1983) model to allow for a subset

of price-adjusting sellers that resort to a backward-looking rule of thumb to set prices. Second,

Christiano et al. (2005), within the same framework, assume that some firms index their price

to past inflation. Third, Fuhrer and Moore (1995), Wolman (1999), Dotsey (2002), Kozicki and

Tinsley (2002), Mash (2003), and Guerrieri (2006) use other forms of time-dependent pricing

that build on the staggered contract model of Taylor (1980). While all these approaches provide

lagged inflation terms, the structure of these Phillips curves is conditional on the assumption

about exogenous nominal rigidities. So a key advantage of the SDPC over this class of Phillips

curves is its endogenous structure.

We evaluate the properties of the SDPC under a variety of assumptions. The paper first

focuses on the coefficients which are functions of the parameters describing the equilibrium

outcome of the model. Based on steady-state comparisons, we examine how the coefficients

respond to changes in the model calibrations of adjustment costs under both low and high trend

inflation environments. The paper then turns to the model’s implications for policy analysis.

By policy implications, we mean the effect of different monetary policy rules for inflation and

output dynamics. We explore how the state-dependency influences the persistence in inflation

under various assumptions for policy inertia. This is done by way of examining the dynamic

response of the economy to a monetary policy shock, when state-dependent pricing is either

present or absent. Also, the paper uses the SDPC framework to examine whether a hybrid

NKPC (NKPC extended by a lagged inflation term) can adequately describe inflation dynamics

generated in a calibrated state-dependent pricing economy. To explore that issue, artificial
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data sets for a state-dependent pricing economy are generated under both low and high trend

inflation environments. These data are used to estimate the hybrid NKPC and to assess the

specification by comparing the estimated coefficients with those derived from the calibrated

model and with those typically found in the empirical literature. Finally, the estimated hybrid

NKPC is added to a small standard macro model, and the response of this model economy to a

monetary policy shock is compared with the corresponding results derived from the full model

with state-dependent pricing.

The reminder of this paper is organized as follows. Section 2 reviews the main features

of the state-dependent model by Dotsey et al. (1999). In Section 3, we derive the SDPC and

show that this generalized Phillips curve nests the NKPC. Section 4 discusses the steady-state

comparisons. Section 5 analyzes the dynamic effects of monetary policy shocks and characterizes

the performance of the hybrid NKPC against the backdrop of a model economy featuring state-

dependent pricing. Section 6 concludes.

2 The state-dependent pricing model

The framework we use in this paper is the dynamic stochastic general equilibrium model with

state-dependent pricing of Dotsey et al. (1999). The economy is characterized by monopolistic

competition between firms selling final goods. With a common technology and common factor

markets real marginal costs are the same for all firms. The novel feature of Dotsey et al. (1999)’s

model is the way price adjustment costs are introduced. It is assumed that firms face stochastic

costs of price adjustment which are i.i.d. across firms and across time. Firms evaluating their

prices weigh the expected benefit from price adjustment against the price adjustment cost they

have drawn in the current period. Conditional on the current adjustment costs, some firms do

adjust while others do not. All adjusting firms set the same price.

In this section, we focus on the key equations describing the optimal nominal price and the

aggregate price level, respectively. Formal details of the rest of the model can be found in Dotsey

et al. (1999). To simplify the presentation, we split the price-setting problem into two parts.

For a given realization of the adjustment cost, each firm has to decide whether to adjust the
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price of the final good it produces and, if so, to what level. The former decision problem can be

described as

Vt = max (υ0,t − ξtwt, υj,t) , (2.1)

where υ0,t gives the current value of the firm if it adjusts the price in the current period, and

υj,t is the value of a firm that last adjusted its price j periods ago. The price adjustment cost is

denoted by ξtwt, where ξt is the realization of the stochastic adjustment cost expressed in labor

units, and wt is the real wage.

The value of the firm in case of a price adjustment in t is determined by

υ0,t = max
P0,t

{z0,t + EtβQt,t+1 [(1− α1,t+1)υ1,t+1 + α1,t+1υ0,t+1 − wt+1Ξ1,t+1]} (2.2)

with

Ξ1,t+1 =
∫ G−1(α1,t+1)

0
ξg(x)dx.

The corresponding value of a firm that last adjusted its price j periods ago in case of no price

adjustment in t is

υj,t = zj,t + EtβQt,t+1 [(1− αj+1,t+1)υj+1,t+1 + αj+1,t+1υ0,t+1 − wt+1Ξj+1,t+1] (2.3)

with

Ξj+1,t+1 =
∫ G−1(αj+1,t+1)

0
ξg(x)dx,

where zj,t denotes the current real profit based on the optimal price set j periods ago, Pj,t,

and the term in square brackets reflects the two possibilities of adjustment and non-adjustment

next period. With probability 1 − αj+1,t+1, the firm will not adjust its price next period; in

this case, we have the discounted expected value of a non-adjusting firm, Et[βQt,t+1υj+1,t+1],

where βQt,t+1 is the stochastic discount factor which varies with the ratio of future to current

marginal utility. With probability αj+1,t+1, the firm will adjust its price next period; in this case,

we have the discounted expected value of an adjusting firm, Et[βQt,t+1υ0,t+1], less the expected

adjustment cost the firm will have to pay, amounting to Et[wt+1α
−1
j+1,t+1Ξj+1,t+1]. The average

cost in labor units paid conditional on adjustment, α−1
j+1,t+1Ξj+1,t+1, depends on G−1(αj+1,t+1),

where G(·) denotes the distribution of the fixed price adjustment cost. Equation (2.2) refers to a

firm which does adjust its price in the current period, so that j = 0; otherwise the interpretation

is the same as in (2.3).
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Now a firm will change its price only if the benefit of a price adjustment exceeds the real-

ization of the random adjustment cost. Formally,

υ0,t − υj,t ≥ wtξt, ∀j = 1, 2, . . . , J. (2.4)

If both sides of (2.4) are equal, the firm is indifferent between adjusting its price and keeping it

unchanged. This borderline case can be used to derive the price adjustment probability αj,t of

a firm that adjusted its price j periods ago. It is the likelihood of drawing an adjustment cost

that is smaller than the benefit expressed in labor units, (υ0,t− υj,t)/wt. This can be written as

αj,t = G(
υ0,t − υj,t

wt
), ∀j = 1, 2 . . . , J. (2.5)

Equation (2.5) describes how the adjustment probabilities depend on the state of the economy.

As the value functions evolve stochastically with the state of the economy, the adjustment

probabilities αj,t, ∀j = 1, 2, . . . , J − 1, also change. Our notation here reflects the fact that J

is the maximum number of periods the firm is willing to go without a price adjustment, i.e.

αJ,t = 1. The number of price vintages is finite because, with adjustment costs bounded from

above and positive trend inflation, the net benefit of a price adjustment becomes arbitrarily

large over time. The state-dependent behavior of the adjustment probabilities is a key feature

of the model. It captures the intuitive notion that adjustment behavior responds to shocks, and

that, with positive inflation, a firm which last changed its price a long time ago is more likely

to readjust than a firm which changed its price more recently.

The adjustment probabilities αj,t, ∀j = 1, 2, . . . , J, can then be used to describe the dis-

tribution of price vintages in the economy and the evolution of this distribution through time.

Let the firms at the beginning of period t be ordered according to the time that has elapsed

since their most recent price adjustment τj,t,∀j = 1, 2, . . . , J, where
∑J

i=1 τj,t = 1. In period

t, a fraction αj,t of vintage-j firms decides to adjust in accordance with (2.4), and a fraction

(1− αj,t) decides to stick to the old price Pj,t. The total fraction of firms adjusting in period t,

ω0,t, is therefore

ω0,t =
J∑

j=1

αj,tτj,t (2.6)

and the fractions of the other firms, i.e., the firms that last adjusted their prices j periods ago,

are

ωj,t = (1− αjt)τj,t, ∀j = 1, 2, . . . , J − 1. (2.7)
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The end-of-period fractions define the distribution of the price vintages at the beginning of

period t + 1: τj+1,t+1 = ωj,t, ∀j = 0, 1, . . . , J − 1. Note that the distribution of prices as well

as the adjustment probabilities are conditional on the exogenous adjustment cost distribution

function G(ξ). In Section 4.1 below, we will examine the sensitivity of the optimal price-setting

behavior with respect to different assumptions for G(·).

We then turn to the second aspect of the firm’s price-setting problem, that is the determi-

nation of the optimal nominal price P0,t. The adjusting firm will choose P0,t such that υ0,t is

maximised. Differentiating (2.2) with respect to P0,t and removing υ1,t+1 by recursive forward

substitution leads to the optimality condition

0 = Et

J−1∑

j=0

βjQt,t+j
ωj,t+j

ω0,t

∂zj,t+j

∂P0,t
, (2.8)

where

ωj,t+j/ω0,t =
j∏

i=1

(1− αi,t+i),

∂zj,t+j

∂P0,t
=

1− θ

Pt+j

[
P0,t

Pt+j

]−θ

Ct+j +
θ

Pt+j

[
P0,t

Pt+j

]−θ−1

MCt+jCt+j .

Here, MCt+j , Ct+j , and Pt+j denote aggregate real marginal costs, aggregate demand and

aggregate prices, and θ is the elasticity of substitution between goods (or equally, the elasticity of

demand for any single good). Equation (2.8) is the dynamic counterpart to the static optimality

condition for the monopolistic firm’s price-setting problem. It requires the sum of the discounted

marginal profits due to a price adjustment to be zero, or, since the profits are defined as revenues

minus costs, the sum of discounted expected marginal revenues to equal the sum of expected

real marginal costs. With common factor markets, as in King and Wolman (1996), the firm’s

real marginal costs in turn can be expressed as a function of aggregate real marginal costs and

aggregate prices.

Solving (2.8) for the optimal price P0,t, yields

P0,t =
θ

θ − 1

Et
∑J−1

j=0 βjQt,t+j
ωj,t+j

ω0,t
MCt+jP

θ
t+jCt+j

Et
∑J−1

j=0 βjQt,t+j
ωj,t+j

ω0,t
P θ−1

t+j Ct+j

. (2.9)

This is the central pricing equation and corresponds to that in Dotsey et al. (1999). The optimal

price depends on current and expected future aggregate real marginal costs, aggregate demand
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and aggregate prices. The weights, Etωj,t+j/ω0,t, reflect the expected probabilities to be stuck

with the currently set price for j periods, Et
∏j

i=1(1 − αi,t+i). These conditional probabilities

are endogenous and vary in response to changes in the state variables. They would be neither

endogenous nor time varying in a purely time-dependent model.

As all firms have identical real marginal costs and identical expectations of future adjustment

costs, P0,t is the same for all adjusting firms.2 The aggregate price index Pt is therefore given

by

Pt ≡
[

J−1∑

j=0

ωj,t(P0,t−j)1−θ

] 1
1−θ

, (2.10)

where ωj,t is the fraction of firms charging the price P0,t−j at time t. A revision of the price

adjustment probabilities induced by a monetary shock, for example, thus affects the persistence

of the aggregate price level through the re-weighting of individual prices in (2.10).

3 The state-dependent Phillips curve (SDPC)

3.1 Derivation

This section discusses the derivation of a Phillips curve from the model outlined in Section 2.

The key equations are (2.9) describing the optimal nominal price set by adjusting firms, P0,t, and

(2.10) describing the aggregate price level, Pt. Starting from (2.9), we can divide both sides of

the equation by Pt to get relative prices. By log-linearising around the steady state and solving

for the optimal relative price x0,t, we get

x0,t = Et

J−1∑

j=1

J−1∑

i=j

[θρi + (1− θ)δi]πt+j + Et

J−1∑

j=0

{ψjmct+j + (ρj − δj)[ω̂j,t+j − ω̂0,t]} (3.1)

with

ρj =
βjωjΠjθ

∑J−1
i=0 βiωiΠiθ

, δj =
βjωjΠj(θ−1)

∑J−1
i=0 βiωiΠi(θ−1)

, ψj = ρj + κ(ρj − δj),

where the ω̂-terms denote absolute deviations and the other time-varying lower-case letters

denote percentage deviations from their respective steady-state values. Appendix A summarises

2Golosov and Lucas (2003) present a menu-cost model in which firms set prices optimally in response
to both aggregate and idiosyncratic shocks. In this set-up price adjusting firms may charge different
prices.
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the main steps of this derivation. Equation (3.1) describes the variations of the optimal relative

price around its steady state, x0,t, as a function of the deviations of future inflation, πt+j , of

current and future real marginal costs, mct+j , and of future probabilities of non-adjustment,

ω̂j,t+j − ω̂0,t, from their steady-state values. The coefficients depend on steady-state inflation,

Π, the steady-state distribution of price vintages, ωj , the number of price vintages, J , the real

discount factor, β, the price elasticity of demand, θ, and the elasticity of aggregate demand

with respect to real marginal costs, κ. With an increase in steady-state inflation for instance,

the benefit of adjusting relative prices rises for all firms. Hence, the adjustment probabilities

increases (according to (2.4)), and the structure and number of the ωj-terms move (according

to (2.6) and (2.7)), thereby affecting the magnitude of the coefficients in (3.1) endogenously.

Starting from (2.10), we then derive the log-linearized version of the aggregate price level in

terms of x0,t. As shown in Appendix A, this yields

x0,t = µ0πt +
J−2∑

j=1

µjπt−j −
J−1∑

j=1

ωjνjx0,t−j − 1
1− θ

J−1∑

j=0

νjω̂j,t, (3.2)

µj =
1
ω0

J−1∑

i=j+1

ωiΠi(θ−1), νj =
1
ω0

Πj(θ−1).

With Ω̂t =
∑J−1

j=0 νjω̂j,t, (3.2) can be rewritten as

x0,t = µ0πt +
J−2∑

j=1

µjπt−j −
J−1∑

j=1

ωjνjx0,t−j − 1
1− θ

Ω̂t. (3.3)

According to (3.3), x0,t is related to deviations of current and lagged inflation, πt−j , and of

lagged optimal relative prices, x0,t−j , from their steady-state values. Further it is related to

the deviation of the distribution of price vintages from the steady state, Ω̂t. The coefficients,

in turn, depend on steady-state inflation, Π, the steady-state distribution of price vintages, ωj ,

the number of price vintages, J , and the price elasticity of demand, θ. With an increase in

steady-state inflation, the steady-state adjustment probabilities and the distribution of price

vintages change endogenously. Since the aggregate price level depends on the distribution of

price vintages, the shifting pattern of the distribution caused by the increase in steady-state

inflation affects the dynamics of the aggregate price level expressed in terms of x0,t.

To obtain an equation for the dynamics of inflation, we combine (3.1) and (3.3) and solve

for πt:

8



πt =
1
µ0

[
J−1∑

j=1

J−1∑

i=j

[θρi + (1− θ)δi]πt+j + Et

J−1∑

j=0

ψjmct+j + Et

J−1∑

j=0

(ρj − δj)[ω̂j,t+j − ω̂0,t]

−
J−2∑

j=1

µjπt−j +
J−1∑

j=1

ωjνjx0,t−j +
1

1− θ
Ω̂t

]
. (3.4)

Applying iterative backward substitution to (3.3) allows us to eliminate all optimal relative

price terms in (3.4). The procedure is outlined in Appendix B. The resulting equation for the

inflation dynamics is given by

πt = Et

J−1∑

j=1

δ′jπt+j + Et

J−1∑

j=0

ψ′jmct+j + Et

J−1∑

j=0

γj [ω̂j,t+j − ω̂0,t] + η0Ω̂t +
∞∑

j=1

ηjΩ̂t−j +
∞∑

j=1

µ′jπt−j ,

(3.5)

where

δ′j =
1
µ0

J−1∑

i=j

[θρi + (1− θ)δi], ψ′j =
1
µ0

ψj , γj =
1
µ0

(ρj − δj),

µ′j =
1
µ0

( j∑

i=1

~e[H(−B)i−1A][.,j−(i−1)] − µj

)
, µj = 0,∀j ≥ J − 1,

η0 =
1
µ0

1
1− θ

, ηj = − 1
µ0

j∑

i=1

~e[H(−B)i−1C][.,j−(i−1)], ∀j ≥ 1.

The details about the matrices H, A, B and C are given in Appendix B. It is sufficient to note

here that ~e is a unity row vector with [(j + 1)(J − 1)− 1] elements and that the matrices H, A,

B and C are square matrices of order [(j + 1)(J − 1)− 1]. The subscript [., j − (i− 1)] denotes

the columns of matrix [H(−B)(i−1)A] and [H(−B)(i−1)C] which are premultiplied by ~e.

We refer to (3.5) as the state-dependent Phillips curve (SDPC). According to the SDPC,

the deviation of current inflation from the steady state, πt, depends on the deviations from

their respective steady-state values of lagged inflation, πt−j , expected future inflation, πt+j ,

current and expected future real marginal costs, mct+j , and expected future probabilities of

non-adjustment, ω̂j,t+j − ω̂0,t, and of the lagged distributions of price vintages, Ω̂t−j .

The number of leads for πt+j , mct+j , and ω̂j,t+j− ω̂0,t are finite, while the number of lags for

πt−j and Ω̂t−j are infinite. The infinite lag structure results from the elimination of the relative
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prices. The coefficients on these lags can be shown to converge to zero. How fast this comes

about depends again on the assumption made about the adjustment cost distribution and on

the state of the economy. The convergence occurs since the price adjustment cost, and therefore

the price-setting behavior, is stochastic implying that ω0,t > ωj,t, ∀j = 1, 2, . . . , J − 1.

The coefficients in the SDPC depend on steady-state inflation, the steady-state distribution

of price vintages, the number of price vintages, and the price elasticity of demand. Those on

the expected variables also depend on the discount factor; those on the marginal cost terms

further depend on the elasticity of aggregate demand with respect to real marginal costs. The

price adjustment costs are not made explicit in (3.5), but they are lingering in the background.

By affecting the number and the distribution of price vintages, they are indirectly linked to the

coefficients of the SDPC. Thus we conclude that with a change in the distribution of adjustment

costs or a change in steady-state inflation, the structure of the SDPC will change as well. In

this section, we have suggested how an increase in steady-state inflation influences the optimal

pricing behavior in the state-dependent model. In Section 4, we shall give a more detailed

account based on numerical methods and figures.

3.2 Nesting the New Keynesian Phillips curve

A substantial amount of recent research in monetary economics has focused on theoretical and

empirical issues related to the NKPC. The NKPC states that current inflation depends on next

period’s expected inflation and on real marginal costs (or another measure of economic activity):

πt = βEtπt+1 +
α(1− β(1− α))

(1− α)
mct. (3.6)

This specification can be derived from a dynamic general equilibrium model with monopo-

listic competition and Calvo-type price stickiness.3 Calvo (1983) assumes that the price-setter

adjusts his or her price whenever a random signal occurs. The signals are i.i.d. across firms and

across time. Thus, there is a constant probability α that a given price-setter will be able to reset

his or her price in a given period. The adjustment probability is independent of the time that

3See Yun (1996) or Gaĺı and Gertler (1999).
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has elapsed since the previous price adjustment, and the adjustment frequency does not depend

on the state of the economy.

If we consider the Dotsey et al. (1999) model under the assumption that price-setting follows

Calvo (1983) and that the level of steady-state inflation is constant at zero (i.e. Π = 1 in gross

terms), we can show that the SDPC representation of inflation dynamics collapses to the NKPC.

Since the Calvo pricing assumption implies that the adjustment probability is constant for all

firms, αj,t = α, the number of price vintages becomes infinite and the weights of the price

vintages can be written as a function of α and j:

ωj,t = α(1− α)j , ∀j = 0, 1, . . .∞.

With these modifications, (3.5) takes the form

πt = Et

∞∑

j=1

δ′jπt+j + Et

∞∑

j=0

ψ′jmct+j + Et

∞∑

j=0

γj [ω̂j,t+j − ω̂0,t] +
∞∑

j=1

µ′jπt−j +
∞∑

j=0

ηjΩ̂t−j , (3.7)

where

δ′j =
α

(1− α)
βj(1− α)j , ψ′j =

α(1− β(1− α))
(1− α)

βj(1− α)j , γj = 0, µ′j = 0, ηj = 0.

There are three points to note here. First, under the assumption of Calvo-type price-setting

and zero trend inflation, the SDPC does not include any lagged terms. This is the consequence

of the definition of the aggregate price level in (2.10). The infinite geometric lag structure

allows us to abstract from the weights of the previously set optimal prices and to summarise the

whole pricing history in terms of the previous period’s aggregate price level. This result holds

regardless of the level of steady-state inflation. Second, the effect of the state-dependent pricing

behavior (reflected in (3.5) by ω̂j,t+j − ω̂0,t, Ω̂t−j) disappears. Third, equation (3.7) includes

an infinite number of leads for expected inflation and expected real marginal costs. As shown

in Figure 1, the coefficients on these leaded variables take a geometrically falling and infinite

form.4

After isolating expected next period’s inflation and current real marginal costs in (3.7), the

4Although the actual number of leads is infinite in the Calvo model, there are only 15 leads displayed
in Figure 1.
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SDPC representation of the Calvo model takes the form

πt = αβEtπt+1 +
α(1− β(1− α))

(1− α)
mct

+
α

(1− α)

∞∑

j=2

βj(1− α)jEtπt+j +
α(1− β(1− α))

(1− α)

∞∑

j=1

βj(1− α)jEtmct+j . (3.8)

The geometrically falling and infinite coefficient structure allows us to express the whole lead

structure in (3.8) in terms of Etπt+1:

β(1 − α)Etπt+1 =
α

(1− α)

∞∑

j=2

βj(1 − α)jEtπt+j +
α(1− β(1− α))

(1− α)

∞∑

j=1

βj(1− α)jEtmct+j .

(3.9)

Making use of (3.9), the SDPC representation in equation (3.8) reduces to the NKPC in

(3.6).5 The quantitative effect of this simplification on the coefficient of Etπt+1 is shown in

Figure 1. The coefficient on expected next period’s inflation is αβ in the SDPC representation

of the Calvo model and β in the NKPC. Since 0 < α < 1, the coefficient is larger in the NKPC.

Note that the coefficient on current real marginal costs is the same in both representations.

4 Evaluation of the SDPC

In this section we evaluate the SDPC with respect to different rates of trend inflation and

different types of price-setting. The analysis is conducted for the steady state. We calibrate the

model and solve for the equilibrium. The calibrations are chosen such that the average duration

of price rigidity turns out to be three quarters for an annualized rate of steady-state inflation of

6%.

One way of describing price-setting behavior is by the sequence of price adjustment probabil-

ities [α1, . . . , αj , . . . , αJ−1]′ considered by the firm. We compare three such sequences which are

based on three different distributions of price adjustment costs. Following Dotsey et al. (1999),

the distribution functions are assumed to have the form G(ξ) = c1 + c2 tan[c3ξ − c4]. Figure

2 illustrates the three cases of price-setting. The first distribution function, labelled ‘flat cdf’,

5Similarly, it can be shown that the SDPC nests the NKPC specifications derived under positive trend
inflation by Ascari (2004) and Bakhshi et al. (2003).
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indicates that a firm is likely to draw either a very small or a very large adjustment cost over

the interval [0, 0.0178]; the likelihood of drawing an intermediate adjustment cost is very small.

The second function, labelled ‘S-shaped cdf’, implies that a firm again is likely to draw either a

small or a large adjustment cost; but the interval now is [0, 0.014] and the likelihood of drawing

an adjustment cost in the middle range is higher than under the first distribution function. This

second function is qualitatively similar to the one adopted by Dotsey et al. (1999). The third

distribution function, labelled ‘linear cdf’, approximates a uniform distribution of adjustment

costs over the interval [0, 0.008].

The rest of the model calibration is the same for all three cases of price-setting. For the price

elasticity of demand, we set θ = 10 implying a flexible price markup of 11%. In addition, we

set β = 0.984 for the quarterly real discount rate, and Π = 1.03 (in gross terms) for the annual

rate of steady-state inflation. The alternative steady-state inflation rate that will be used for

comparison is set at Π = 1.06 (in gross terms). Table 1 summarizes the calibrations.6

4.1 Steady-state comparisons of adjustment probabilities and
fractions of firms in price vintages

We start our evaluation by looking at the steady-state price adjustment probabilities, αj , and

the corresponding distribution of price vintages, ωj . Figure 3 summarizes the results for the

three types of price-setting behavior (flat cdf, S-shaped cdf and linear cdf) and the two levels

of steady-state inflation (3% and 6%). The horizontal axis indicates the vintages ordered by

the number of quarters j since the price has been set. The panels in the first column of Figure

3 display the adjustment probabilities, whereas the distributions of price vintages are in the

second column.

As we would expect, the adjustment probability αj is not constant across price vintages. It

rises with j in all three models. The reason is that in an inflationary environment the expected

benefit of adjusting prices is larger for firms of vintage j +1 than for firms of vintage j, resulting

in a higher adjustment probability. With the S-shaped cdf and πss = 3%, for example, there

6With few exceptions, the parameter values are as in Dotsey (2002). The parameter value of θ is
taken form Chari et al. (2000). The calibrations of the distribution of adjustment costs and of the level
of steady-state inflation are our own.
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is a probability of just 5% that firms which adjusted their price in the previous period (j = 1)

do adjust again in the current period. By contrast, firms which set their price two years ago

(j = 8) will expect a sizable profit gain from readjusting. Hence, the probability of adjusting in

the current period is considerably higher (59%).

With the level of steady-state inflation rising from 3% to 6%, the relative prices of the

various firms erode more rapidly. As a result, the firms adjust their prices more frequently.

This is reflected in higher adjustment probabilities αj . At the same time, the number of price

vintages increases with higher levels of steady-state inflation. Consider again the model with

the S-shaped cdf for adjustment costs. There are 11 price vintages when steady-state inflation

is 3%. As the rate of steady-state inflation rises to 6%, the number of vintages declines to 6,

and the average duration of price rigidity falls from a good four quarters to three quarters.

Turning to the fractions of firms in the different price vintages, we note that the fractions

decline as j rises. Also, the number of price vintages is smaller with higher steady-state inflation,

and the number of firms in vintages with low j is larger. Under the S-shaped cdf for example,

ω0 increases from 0.24 at 3% inflation to 0.33 at 6% inflation.

Finally, we observe that the shape of the adjustment probabilities displayed in Figure 3 differs

depending on the adjustment cost distribution function. This difference is not transmitted to

the distribution of price vintages, however. At least for low rates of steady-state inflation, the

distributions of price vintages are strikingly similar across the three price-setting assumptions.

4.2 Adjustment cost distributions and the SDPC

The reminder of Section 4 focuses on the SDPC coefficients. As the distributions of price adjust-

ment costs (flat cdf, S-shaped cdf, linear cdf) cause substantial differences between sequences of

adjustment probabilities, we may wonder how the three distributions influence the reduced-form

coefficients in the SDPC. Figure 4 displays the SDPC coefficients computed under the assump-

tion of 3% steady-state inflation. The leads (+) and lags (−) of the variables are given on the

horizontal axis, the coefficients (δ′j , µ′j , ψ′j , γj , ηj) on the vertical axis.

14



The coefficients on expected future inflation, δ′j , and on current and expected future real

marginal costs, ψ′j , take their highest values at low leads and fall off smoothly with higher leads

in a slightly convex pattern. This pattern is similar to the one we observed in Figure 1 for the

SDPC representation of the Calvo model implied by (3.8). The coefficients on lagged inflation,

µ′j , are quantitatively important at low lags but fall off rapidly at higher lags and converge to

zero. The coefficients on the state-dependent behavioral terms, γj and ηj , are converging to zero

in an oscillating pattern.

The comparison across the different types of price-setting behavior indicates that the differ-

ences between the three adjustment cost distribution functions have little effect on the reduced-

form coefficients of the SDPC. The explanation is based on the definition of the coefficients.

According to (3.5), the coefficients depend on Π, J , ωj , β, θ, and κ. In our calibration, it is

assumed that Π = 3%, β = 0.984, θ = 10 and κ = 0.66 in all three models. Also, as shown in

Section 4.1, the number of price vintages (flat cdf: J = 10, S-shaped cdf: J = 10, linear cdf:

J = 8) and the distribution of price vintages, ωj , vary little across the three models despite

marked differences in the sequences of adjustment probabilities. Thus, the similarity can be

traced back to the parameters and steady-state values going into the reduced-form coefficients

of the SDPC, which are all either equal or similar across the three types of price-setting behavior.

4.3 Trend inflation and the SDPC

Next, we explore the effect of the steady-state inflation rate on the reduced-form coefficients of

the SDPC. We have seen in Figure 3 that a higher level of steady-state inflation leads to an

upward revision of the optimal adjustment probabilities. As a consequence, prices are adjusted

more frequently, the number of price vintages, J , declines and the distribution of price vintages,

ωj , is modified. Since the other factors determining the reduced-form coefficients of the SDPC (β,

θ and κ) remain unchanged, any effect of the steady-state inflation rate on the SDPC coefficients

must be attributed to this mechanism.

We consider two steady-state inflation rates: 3% and 6%. The results displayed in Figure 5

show that with steady-state inflation rising from 3% to 6%, the number of future inflation terms

falls. The coefficients on expected future inflation, δ′j , increase with inflation at low leads while
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falling off more rapidly at higher leads. The same pattern holds for the coefficients on current

and future real marginal costs, ψ′j , on the expected variations in state-dependent price-setting

behavior, γj , and − with lags instead of leads − on lagged inflation. At the same time, the

oscillating pattern gets more distinct. Note, finally, that the coefficients on expectations about

future state-dependent deviations from steady-state adjustment behavior are small for all three

types of adjustment costs.

4.4 Lagged inflation terms

With few exceptions, the coefficients on lagged inflation displayed in Figures 4 and 5 are positive.

The largest value is on the first lag. This coefficient is positive in all six cases considered. With

higher lags, the coefficients fall off rapidly. Table 2 presents the coefficient on the first lag, µ1,

and the sum of the coefficients on all lagged inflation terms, approximated by
∑3J

j=1 µj , for the

three price-setting assumptions (flat cdf, S-shape cdf, linear cdf) and the two steady-state rates

of inflation (3% and 6%). The results confirm that the sum of the coefficients on lagged inflation

is positive in all cases considered.

This pattern is interesting for two reasons. First, it is consistent with a large amount of

empirical evidence which suggests that inflation depends positively on its own lagged values

even after controlling for fundamental factors like current and anticipated real marginal costs

(or other measures of economic activity). Second, it indicates that models with state-dependent

pricing offer, at least in principle, an explanation of intrinsic persistence. Standard models with

micro-foundations do not produce an independent positive effect of lagged inflation on current

inflation. In the NKPC which is based on Calvo-style pricing, lagged inflation is irrelevant

in determining inflation, and while models based on Taylor-style staggered contracts do allow

current inflation to depend on past inflation, the coefficients on lagged inflation will be negative

(see Dotsey (2002), Whelan (2004) and Guerrieri (2006)). Such problems have been addressed

by introducing rule-of-thumb price setters or indexation into otherwise purely forward-looking

models (as in Gaĺı and Gertler (1999) and Christiano et al. (2005)). Yet these adjustments are

open to criticism, in that they are not micro founded.

To examine the SDPC coefficients on lagged inflation, it is useful to consider their deter-
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minants. Since the generalized structure given in (3.5) is somewhat cumbersome, it is more

convenient to consider individual coefficients. The coefficient on the first lag of inflation is given

by

µ′1 =
ω1Π(θ−1)

ω0
−

∑J−1
i=2

ωi
ω0

Πi(θ−1)

∑J−1
i=1

ωi
ω0

Πi(θ−1)
. (4.1)

The first term on the right-hand-side of (4.1) is the product of the probability of non-adjustment

one period after the price has been reset, ω1
ω0

= (1− α1), and the level of steady-state inflation.

The second term is a ratio of two sums, where the numerator is the sum of inflation weighted

probabilities of non-adjustment, ωj

ω0
= (1− α1)(1− α2)(1− α3)...(1− αj), from t through t + j

starting at j = 2, and the denominator is the corresponding sum starting at j = 1. For the

first term, it can be shown that it is greater than one for plausible values of Π, θ and α1. The

second term on the other hand is always less than one. Therefore we can conclude that the

SDPC coefficient on the first lag of inflation is positive.7

5 The SDPC and inflation dynamics

In this section we consider various issues related to inflation persistence, i.e., the tendency of

inflation to move gradually towards its long-term value. We show how the response of inflation

to a monetary policy shock changes with variations in policy inertia and shifts in trend inflation.

And closer to the main focus of this paper, we examine how the price setting assumption

underlying the SDPC modifies inflation dynamics. We set the SDPC against the popular hybrid

NKPC proposed by Gaĺı and Gertler (1999) to consider the implications of using the hybrid

NKPC, when the true price-setting model is in fact state dependent, so the correct inflation

equation is the SDPC.

5.1 The consequences of a monetary policy shock

To close the model described in Section 2, we adopt a standard monetary policy rule of the form

it = ρ1it−1 + (1− ρ1)(φππt + φyyt) + εt. (5.1)

7When price-setting behavior is according to Calvo (1983) and the level of steady-state inflation is
constant at zero (i.e., Π = 1), µ′1 and all coefficients on higher lags of inflation fall to zero since the two
terms in (4.1) (and in the corresponding definitions for higher lags) exactly add up to zero.
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Here, it is the nominal interest rate, yt is the output gap, and εt is an i.i.d. monetary policy

shock.8 The parameters φπ and φy are set to 1.5 and 0.5.

We refer to the complete model with (5.1) as the SDP model. The model is linearized

around the equilibrium outcome based on the S-shaped cdf for adjustment costs. The steady-

state inflation rate is set at 3% and the parameter defining the degree of policy inertia, ρ1, is

set to 0.8. The responses of inflation and other variables to a (negative) interest rate shock

of 100 basis points are summarized in Figure 6 (dotted lines). We can see that inflation and

output rise by 1.4% and 1.6% on impact. Thereafter, the effects gradually decline. The fraction

of price adjusting firms jumps by 35 percentage points on impact before declining gradually

as well. In addition, we can see from the panel at the bottom of the table that the positive

contribution of lagged inflation terms to inflation is partly offset by negative contributions from

lagged state-dependent variations in the distribution of price setters (Ω̂ terms). The presence of

state-dependent adjustment behavior, therefore, tends to counteract the intrinsic persistence in

inflation.

The persistence in inflation displayed in Figure 6 is strongly affected by the assumption on

policy inertia. This can be seen by comparing the impulse responses based on ρ1 = 0.8 with

the case of no policy inertia defined as ρ1 = 0 (solid lines). We find that the impact effects on

inflation (0.25%) and output (0.4%) are considerably smaller without policy inertia. The same

holds for the fraction of extra adjusters. Forward-looking price setters, by anticipating output

and inflation to return rapidly to the steady-state values, will expect a smaller benefit from price

adjustment than in the presence of policy inertia. As a result, the fraction of extra adjusters is

smaller. One period after the shock, the output effect is basically zero, while a small inflation

effect persists. Again, we observe that the presence of state-dependent adjustment behavior

tends to counteract the effect coming from the lagged inflation terms.

To highlight the role of the state-dependent terms in greater detail, we analyze a parsimo-

nious model from the SDP model. In this alternative model, the adjustment probabilities are

held fixed at their steady-state values. Essentially, this is the time-dependent pricing counter-

part of the SDP model and is therefore referred to, in what follows, as the TDP model. In the

8Dotsey et al. (1999) by contrast consider a money supply rule, not an interest rate rule.
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TDP model, the SDPC defined by (3.5) reduces to the TDPC:

πt = Et

J−1∑

j=1

δ′jπt+j + Et

J−1∑

j=0

ψ′jmct+j +
∞∑

j=1

µ′jπt−j , (5.2)

where it should be noted that the coefficients on πt+j , mct+j and πt−j are identical with those

in (3.5).9

The consequences of a monetary policy shock in the TDP model are shown in Figure 7. We

assume a steady-state inflation rate of 3%, and ρ1 = 0.8 for the degree of policy inertia. The

corresponding results for the SDP model are given for convenience. The comparison illustrates

the effect of state-dependent price-setting on the dynamics of inflation. We find that by sup-

pressing state-dependent pricing the impact effect on inflation declines. The reason is that the

fraction of adjusting firms does not respond to the state of the economy so that there are no

extra adjusters in the aftermath of a monetary policy shock. Prices are stickier on impact, and

the effect on output is amplified. In addition, we can see that the persistence in inflation and in

output is larger than in the SDP model. Three quarters after the shock, the contribution of the

lagged inflation terms accounts for half of the response of inflation to the monetary policy shock.

In the SDP model, on the other hand, as noted above, the intrinsic persistence is counteracted

by the lagged Ω̂ terms.

We have assumed so far that the rate of steady-state inflation is set at 3%. By raising steady-

state inflation to 6%, we examine how the dynamic response of the economy to a monetary policy

shock is affected by changes in trend inflation. Results for the SDP model under high policy

inertia (ρ1 = 0.8) are reported in Figure 8. The impact effect of a monetary policy shock on

inflation is larger when steady-state inflation is higher. But, the persistence in inflation declines.

As pointed out in Section 4.1, the adjustment probabilities in each price vintage and the average

frequencies of price adjustment increase with steady-state inflation. As a consequence, the

total number of price vintages, and therefore inflation persistence, is reduced. For output, this

mechanism gives the opposite pattern. The impact effect of a monetary policy shock on output

9It can be shown that the TDPC representation of inflation dynamics collapses to the NKPC if we
assume a constant price adjustment probability for all firms (implying an infinite number of price vintages)
and zero trend inflation.
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is smaller when steady-state inflation is shifted from 3% to 6%, and the effect of the shock on

output persistence is larger. In quantitative terms, all these differences are fairly modest. At

least for the calibration used here, the response of inflation and output to a monetary shock

does not seem to be very sensitive to whether steady-state inflation is 3% or 6%.

5.2 Performance of the hybrid NKPC in an SDPC economy

We now move to the implications of assuming a simplified description of inflation dynamics

when the true inflation process is given by the more general SDPC. In particular, we assess

the performance of the popular hybrid NKPC which is extensively used in the theoretical and

empirical literature on inflation determination. Gaĺı and Gertler (1999) derived the hybrid

NKPC based on the assumption that some firms set their prices in a forward-looking optimizing

way à la Calvo (1983), while other firms apply a backward-looking rule of thumb when setting

prices. The resulting equation is

πt = γbπt−1 + γfEtπt+1 + λmct. (5.3)

Unlike the purely forward looking NKPC described by (3.6), the hybrid NKPC features a lagged

inflation term, πt−1, which can capture intrinsic persistence in inflation. Empirical evidence

for several countries suggests that the hybrid NKPC provides a better description of inflation

dynamics than the purely forward-looking NKPC. Examples include Gaĺı and Gertler (1999),

Gaĺı et al. (2001), Leith and Malley (2002), and Smets and Wouters (2003), Gagnon and Khan

(2005).10 Estimates of (5.3) typically show that the coefficient on expected future inflation, γ̂f ,

exceeds the coefficient on lagged inflation, γ̂b, and the coefficient on measured real marginal cost,

λ̂, is positive though not always statistically significant.

10In response to criticisms by Rudd and Whelan (2005) and Linde (2005), Gaĺı et al. (2005) present
empirical evidence for the robustness of their estimates of the hybrid NKPC. For evidence in support of
the purely forward-looking NKPC, see Sbordone (2002) and Lubik and Schorfheide (2004).
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5.2.1 Estimates of the hybrid NKPC

To investigate whether the hybrid NKPC is a good approximation of the SDPC, we start by

estimating (5.3) based on artificial data generated by the SDP.11 These estimates are then

compared with the typical pattern provided by estimates of (5.3) based on real data. In addition,

they are compared with the true coefficients of the SDPC displayed in Figures 4 and 5, which

we have derived from the calibrated model. To gain further insight, the exercise is repeated by

simulating data from the TDP model.

For the generation of the data sets, we assume three types of shocks: to preferences, to

technology, and to the interest rate (monetary policy). The monetary policy shocks are assumed

to be i.i.d., whereas the shocks to preferences and technology are assumed to follow an AR(1)

process with a persistence parameter of 0.5. The standard deviation of the innovation to a shock

is 1% (monetary policy, preferences) and 0.7% (technology), respectively. The two models (SDP

model and TDP model) are log linearized around the steady state based on the assumption of

the S-shaped distribution of adjustment costs and two different rates of steady-state inflation

(3% and 6%). A high degree of policy inertia is assumed throughout (ρ1 = 0.8). The average

duration of price stickiness turns out as roughly four quarters at 3% and three quarters at 6%

steady-state inflation. For each of the four cases considered, 1,000 samples of 150 observations

are generated.

Based on these data sets, we estimate (5.3) using the Generalized Method of Moments

(GMM) approach. The instrument set we use comprises of four lags each of inflation, real

marginal costs and the output gap. This lag length corresponds to that typically used in the

empirical literature (see, for example, Gaĺı and Gertler (1999)). Table 3 presents the mean

estimates of the coefficients λ, γf and γb over the respective 1,000 data sets. The interval in

square brackets is given by the 10% and the 90% quantiles of the distributions of the coefficient

estimates. The share of the 1,000 data sets with a significant t-value for λ is given in brackets.

J∗ indicates the fraction of the 1,000 data sets where the Sargan-Hansen instrument validity

test is passed.

11Dotsey (2002) conducts a similar experiment. He estimates (5.3) based on data generated by a
three-period forward-looking truncated Calvo model under zero steady-state inflation.
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We find that the results presented in Table 3 are broadly consistent with the pattern typi-

cally found in real data. That is, the estimated coefficient on expected future inflation, γ̂f , is

larger than the estimated coefficient on lagged inflation, γ̂b, and the point estimate of the real

marginal cost coefficient, λ̂, is positive, though not always significant. This holds for all four

cases considered, implying that the correspondence appears to be independent of steady-state

inflation and the assumption of state-dependent pricing.

Next, we compare the estimated coefficients of the hybrid NKPC with the coefficients of

the SDPC and the TDPC displayed in Figure 4 (for a steady-state inflation rate of 3%) and

Figure 5 (for a steady-state inflation rate of 6%). As noted earlier, the coefficients on πt−j ,

πt+j and mct+j derived from the calibrated model do not differ between SDPC and TDPC. The

comparison with the estimated coefficients of the hybrid NKPC provides mixed results. The

estimate of γ̂b is in the ballpark of our metric of intrinsic persistence, that is the sum of the

coefficients on lagged inflation reported in Table 2. However, the estimated coefficient on current

marginal costs, λ̂, is some way below the corresponding coefficients derived from the calibrated

model. This is all the more striking as expected future marginal costs are completely ignored

in the hybrid NKPC, whereas the coefficients on these terms are all positive in Figure 4 and

Figure 5. Finally, we note that the estimates of the duration of price stickiness, D̂ - calculated

using the estimates of γ̂f , λ̂ and the calibrated β - are all slightly below the average durations

derived from the calibrated model, reported in Table 2.

5.2.2 Responses to monetary shocks

Based on the results presented in Section 5.2.1, we then examine whether the misspecification of

the hybrid NKPC really matters. Specifically, we perform a simulation exercise that should give

us some idea about how much we are misled by mistakenly using the estimated hybrid NKPC

when quantifying the effects of a monetary policy impulse. That is, we compare the dynamic

responses of inflation, output and the interest rate to a monetary policy shock in the SDP model

and the TDP model with those generated in a small New Keynesian macro model that includes

the hybrid NKPC. The latter is a standard three equation model consisting of a log-linearized
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Euler equation,

yt = Etyt+1 − 1
σ

(it − Etπt+1) + εy,t, (5.4)

the hybrid NKPC (5.3) parameterized with the mean estimates reported in Table 3, and the

monetary policy rule (5.1) with ρ1 = 0.8.

As in Section 5.1, the monetary policy shock is a (negative) shock to the interest rate of

100 basis points. We compute the dynamic responses of the model with the hybrid NKPC and

compare the results with those obtained from the SDP model and the TDP model. Figure

9 reports the results of this comparison based on a steady-state inflation rate of 3%. The

corresponding results for steady-state inflation set at 6% are in Figure 10.12

We find that the model with the hybrid NKPC tends to understate the impact effect of the

monetary policy shock on inflation. The impact effect on output in turn is overstated. This

result is consistent with our finding that the estimate of the coefficient on current real marginal

costs in the hybrid NKPC is biased downwards. It also reflects the fact that the expected future

real marginal costs do not show up in the hybrid NKPC, whereas the coefficients on these terms

are all positive in the SDPC and TDPC. Also, we note that the differences in impact effects are

considerably larger under state-dependent pricing than under time-dependent pricing. This is

due to the fact that under state-dependent pricing the fraction of extra adjusters will jump after

a monetary policy shock. As a result, the impact effect on inflation is amplified and the impact

effect on output is muted relative to the TDP model.

Turning to the persistence in inflation generated by the various models, we find fairly modest

differences between the model with the hybrid NKPC and the TDP model, and considerable

differences between the former and the SDP model. The inflation persistence generated by the

TDP model is tracked well by the model with the hybrid NKPC, indicating that the persistence

generated by the sequence of lagged inflation terms in the TDPC,
∑3J

j=1 µj , is well approximated

by the coefficient on lagged inflation in the estimated hybrid NKPC. The comparison with the

SDP model in turn suggests that the inflation response generated by the model with the hybrid

NKPC is not only biased downward on impact but also significantly more persistent than the

12Some of the impulse responses based on the SDP model and on the TDP model are repeated from
Figures 6 to 8.
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effects predicted by the SDP model. Again, the considerably larger impact effect reflects again

the large swings in the fraction of adjusting firms allowed by the SDP model. Overall, these

results suggest that the hybrid NKPC is a good approximation of the inflation dynamics provided

by more general time-dependent models or by state-dependent models when the variations in

the distribution of price vintages are minor.13

6 Conclusions

We have used the state-dependent pricing model of Dotsey et al. (1999) to derive a general speci-

fication for the Phillips curve which allows for positive steady-state inflation and state-dependent

price-setting behavior. In the state-dependent Phillips curve (SDPC) inflation depends on cur-

rent and expected future real marginal costs, past and expected future inflation, and past and

expected future fluctuations in the price adjustment pattern. As it turns out, the specific nature

of firms’ price-setting behavior and the structural parameters of the model, such as the level of

steady-state inflation, have important implications for the coefficients and the lead-lag structure

of the SDPC.

An interesting property of the SDPC is that it offers an explanation of intrinsic persistence.

That is, it implies positive coefficients on lagged inflation for a wide range of price-setting

behavior. We have illustrated how the lagged inflation terms contribute to the overall persistence

in inflation. As might be expected, the effect of lagged inflation gives rise to a considerable

amount of inflation persistence as long as there are no or only little state-dependent variations

in price vintages. But if a considerable number of price setters feel compelled to reset prices after

an event, the persistence in inflation is reduced. This reflects the fact that the state-dependent

pricing mechanism adds more price flexibility to economic dynamics. In extreme, prices could

become fully flexible and inflation persistence would disappear.

Also, we have illustrated that the monetary policy rule has an influence on price-setting

13This is consistent with the findings of Klenow and Kryvtsov (2005). They present empirical evidence
based on U.S. inflation data suggesting that the dominant contribution to the variance of inflation comes
from the average size of price changes (as opposed to the fraction of items with price changes). When
they calibrate the model of Dotsey et al. to match this variance decomposition, they find that the model’s
impulse responses are very close to those in a simple time-dependent model.
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and thereby on inflation persistence. In the absence of monetary policy inertia, there is little

incentive to deviate from the equilibrium price adjustment pattern after a shock and therefore

only little effect from the variation in the distribution of price vintages on inflation. But with

high monetary policy inertia, a larger number of price-setters will decide to reset prices after a

shock such that inflation persistence is reduced significantly relative to a model without state-

dependent pricing.

Finally we assessed the performance of the popular hybrid NKPC (with one lag of inflation)

in an economy with state-dependent price-setting. Data are simulated from plausibly calibrated

model economies and are used to estimate the hybrid NKPC. We find that the hybrid NKPC does

well in tracking the intrinsic persistence found in the data-generating model, but fails to replicate

the sensitivity of inflation with respect to real marginal costs. Specifically, using the estimated

hybrid NKPC specifications to generate dynamic responses to a monetary shock in a small

New Keynesian model, we find that the estimated hybrid NKPC captures the macroeconomic

dynamics fairly well as long as there is little or no state-dependent price-setting. But, if sizeable

state-dependent variations in the distribution of price vintages are present, the hybrid NKPC

generates too much persistence in the macroeconomic variables, and understates the impact

response of inflation to shocks.
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A Log-linearization of the main pricing equations

Consider the first-order condition for an optimal nominal price, as given by equation (2.8) in

the text. After some rearrangement, we obtain

Et

J−1∑

j=0

βjQt,t+j
ωj,t+j

ω0,t

[
P0,t

Pt

Pt

Pt+j

]1−θ

Ct+j =

θ

θ − 1
Et

J−1∑

j=0

βjQt,t+j
ωj,t+j

ω0,t
MCt+j

[
P0,t

Pt

Pt

Pt+j

]−θ

Ct+j . (A.1)

Replacing P0,t/Pt by X0,t and using Pt/Pt+j = 1/
∏j

i=1 Πt+i, A.1 can be rewritten as

Et

J−1∑

j=0

βjQt,t+j
ωj,t+j

ω0,t

[
1∏j

i=1 Πt+i

]1−θ

Ct+jX0,t =

θ

θ − 1
Et

J−1∑

j=0

βjQt,t+j
ωj,t+j

ω0,t
MCt+j

[
1∏j

i=1 πt+i

]−θ

Ct+j . (A.2)

Log-linearizing A.2 around the steady-state values ωj = ωj , ∀j = 0, . . . , J − 1, C = C, Π = Π,

X = P0
P , Q = 1, and MC = MC yields

Et

J−1∑

j=0

[
qt,t+j + ω̂j,t+j − ω̂0,t + (θ − 1)

j∑

i=1

πt+i + ct+j + x0,t

]
βj ωj

ω0
Πj(θ−1)CX =

θ

θ − 1
Et

J−1∑

j=0

[
qt,t+j + ω̂j,t+j − ω̂0,t + mct+j + θ

j∑

i=1

πt+i + ct+j

]
βj ωj

ω0
ΠjθCMC, (A.3)

where ω̂-terms denote absolute deviations and the other time-varying lower-case letters denote

percentage deviations of variables from their respective steady-states values. Using

X =
θ

θ − 1

J−1∑
j=0

βjωjΠjθ

J−1∑
j=0

βjωjΠj(θ−1)

MC, (A.4)

we can solve for the optimal relative price:

x0,t = Et

J−1∑

j=0

[
qt,t+j + ω̂j,t+j − ω̂0,t + mct+j + θ

j∑

i=1

πt+i + ct+j

]
βjωjΠjθ

J−1∑
i=0

βiωiΠiθ

−Et

J−1∑

j=0

[
qt,t+j + ω̂j,t+j − ω̂0,t + (θ − 1)

j∑

i=1

πt+i + ct+j

]
βjωjΠj(θ−1)

J−1∑
i=0

βiωiΠi(θ−1)

. (A.5)
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Relating real marginal cost fluctuations to the fluctuations of output, we can write:

ct = κmct, (A.6)

where κ denotes the elasticity of aggregate demand with respect to real marginal costs. If the

expected future fluctuations of the stochastic discount factors, qt+j , are ignored, substituting

A.6 into A.5 and rearranging yields

x0,t = Et

J−1∑

j=1

J−1∑

i=j

[θρi + (1− θ)δi]πt+j + Et

J−1∑

j=0

{ψjmct+j + (ρj − δj)[ω̂j,t+j − ω̂0,t]}, (A.7)

where

ρj =
βjωjΠjθ

∑J−1
i=0 βiωiΠiθ

, δj =
βjωjΠj(θ−1)

∑J−1
i=0 βiωiΠi(θ−1)

, ψj = ρj + κ(ρj − δj).

Equation A.7 corresponds to (3.1) in the text.

Consider next the aggregate price level described by (2.10) in the text:

Pt =

[
J−1∑

j=0

ωj,t(P0,t−j)1−θ

] 1
1−θ

. (A.8)

Equation A.8 can be rewritten such that all elements are constant along the inflationary steady

state:

1 =
J−1∑

j=0

[
ωj,t

(
P0,t−j

Pt

)1−θ]
=

J−1∑

j=0

[
ωj,t

(
P0,t−j

Pt−j

Pt−j

Pt

)1−θ]
. (A.9)

Replacing P0,t−j/Pt−j by X0,t−j and Pt−j/Pt by 1/
∏j−1

i=0 Πt−i, we obtain

1 =
J−1∑

j=0

ωj,t

X1−θ
0,t−j

∏j−1
i=0 Πt−i

1−θ
. (A.10)

Log-linearizing A.10 around the steady-state values X0,t−j = X, ωj = ωj , and Π = Π gives

0 =
J−1∑

j=0

[
X1−θ

Πj(1−θ)
ω̂j,t + (1− θ)ωj

X1−θ

Πj(1−θ)
x0,t−j − (1− θ)ωj

X1−θ

Πj(1−θ)

j−1∑

i=0

πt−i

]
. (A.11)

Solving for current inflation gives

(1− θ)
J−1∑

j=1

ωjΠj(θ−1)πt =
J−1∑

j=0

[
1

Πj(1−θ)
ω̂j,t + (1− θ)ωj

1
Πj(1−θ)

x0,t−j − (1− θ)ωj
1

Πj(1−θ)

j−1∑

i=1

πt−i

]

(A.12)
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and

πt =
1∑J−1

j=1 ωjΠj(θ−1)

J−1∑

j=0

[
Πj(θ−1)ω̂j,t + ωj

1
Πj(1−θ)

x0,t−j − ωjΠj(θ−1)
j−1∑

i=1

πt−i

]
, (A.13)

where again ω̂-terms denote absolute deviations and the other time-varying lower-case letters

denote percentage deviations of variables from their respective steady-states values. Since X =

P0/P , we have

0 =
(

P0

P

)1−θ J−1∑

j=0

[
Πj(θ−1)

(
1

1− θ
ω̂j,t + ωj(x0,t−j −

j−1∑

i=0

πt−i)

)]
. (A.14)

Solving for the optimal relative price, x0,t, yields, after some rearrangement,

x0,t =
1
ω0

[
J−2∑

j=0

J−1∑

i=j+1

ωiΠi(θ−1)πt−j −
J−1∑

j=1

ωjΠj(θ−1)x0,t−j − 1
1− θ

J−1∑

j=0

Πj(θ−1)ω̂j,t

]
. (A.15)

Equation A.15 corresponds to (3.2) in the text.

B Derivation of the SDPC coefficients

Consider (3.1) and (3.3) in the text. Combining these two equations and solving for πt, one

obtains

πt =
1
µ0

[
Et

J−1∑

j=1

J−1∑

i=j

[θρi + (1− θ)δi]πt+j + Et

J−1∑

j=0

ψjmct+j + Et

J−1∑

j=0

(ρj − δj)[ω̂j,t+j − ω̂0,t]

−
J−2∑

j=1

µjπt−j +
J−1∑

j=1

ωjνjx0,t−j +
1

1− θ
Ω̂t

]
, (B.1)

where

ρj =
βjωjΠjθ

∑J−1
i=0 βiωiΠiθ

, δj =
βjωjΠj(θ−1)

∑J−1
i=0 βiωiΠi(θ−1)

, ψj = ρj + κ(ρj − δj),

µj =
1
ω0

J−1∑

i=j+1

ωiΠi(θ−1), νj =
1
ω0

Πj(θ−1), Ω̂t =
J−1∑

j=0

νjω̂j,t.

Using (3.2) and applying matrix notation, the weighted lagged relative price terms in B.1, can

be written as

H~xt = HA~πt −HBxt−1 −HC~Ωt, (B.2)
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where

~xt =




x0,t−1

x0,t−2

...

x0,t−(J−1)

...

x0,t−2J+2

...

x0,t−T




~πt =




πt−1

πt−2

...

πt−(J−1)

...

πt−2J+2

...

πt−T




~Ωt =




Ω̂t−1

Ω̂t−2

...

Ω̂t−(J−1)

...

Ω̂t−2J+2

...

Ω̂t−T




H =




ω1ν1 0 · · · · · · · · · · · · · · · 0

0 ω2ν2 0 · · · · · · · · · · · · ...
...

. . . . . . . . . . . . . . . . . .
...

...
. . . . . . ωJ−1νJ−1 0 · · · · · · ...

...
. . . . . . . . . 0

. . . . . .
...

...
. . . . . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . . . . .
...

0 · · · · · · · · · · · · · · · · · · 0




A =




µ0 µ1 · · · µJ−2 0 · · · · · · 0

0 µ0 µ1 . . . µJ−2 0 · · · ...
...

. . . . . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . . . . . . . 0

...
. . . . . . 0 µ0 µ1 · · · µJ−2

...
. . . . . . . . . . . . 0 · · · 0

...
. . . . . . . . . . . . . . . . . .

...

0 · · · · · · · · · · · · · · · · · · 0




B =




ω1ν1 ω2ν2 · · · ωJ−1νJ−1 0 · · · · · · 0

0 ω1ν1 ω2ν2 · · · ωJ−1νJ−1 0 · · · ...
...

. . . . . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . . . . . . . 0

...
. . . . . . 0 ω1ν1 ω2ν2 · · · ωJ−1νJ−1

...
. . . . . . . . . . . . 0 · · · 0

...
. . . . . . . . . . . . . . . . . .

...

0 · · · · · · · · · · · · · · · · · · 0



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C =




1
1−θ 0 · · · · · · · · · · · · · · · 0

0 1
1−θ 0 · · · · · · · · · · · · ...

...
. . . . . . . . . . . . . . . . . .

...
... · · · 0 1

1−θ 0 · · · · · · ...
...

. . . . . . 0 1
1−θ 0 · · · ...

...
. . . . . . . . . . . . 0 · · · ...

...
. . . . . . . . . . . . . . . . . .

...

0 · · · · · · · · · · · · · · · · · · 0




By iterative backward substitution, the lagged relative price terms in B.2 can be expressed in

terms of lagged inflation rates and lagged deviations of the distributions of price vintages from

their steady-state distribution:

H~xt = HA~πt −HBxt−1 −HC~Ωt

= HA~πt −HB[Aπt−1 −Bxt−2 − CΩt−1]−HC~Ωt

...

=
k∑

j=0

H(−B)j [A~πt−j − C~Ωt−j ] + H(−B)k+1xt−(k+1)

...

= lim
k→∞

k∑

j=0

H(−B)j [A~πt−j − C~Ωt−j ]. (B.3)

Thus, if we unwind the lagged relative price terms in B.2 to the infinite past, B.1 can be expressed

as

πt = Et

J−1∑

j=1

δ′jπt+j + Et

J−1∑

j=0

ψ′jmct+j + Et

J−1∑

j=0

γj [ω̂j,t+j − ω̂0,t] +
∞∑

j=1

µ′jπt−j +
∞∑

j=0

ηjΩ̂t−j , (B.4)

where

δ′j =
1
µ0

J−1∑

i=j

[θρi+(1−θ)δi] =
ω0∑J−1

k=1 ωkΠk(θ−1)

J−1∑

i=j

[θ
βiωiΠiθ

∑J−1
k=0 βkωkΠkθ

+(1−θ)
βiωiΠi(θ−1)

∑J−1
k=0 βkωkΠk(θ−1)

],

ψ′j =
1
µ0

ψj =
ω0∑J−1

i=1 ωiΠi(θ−1)

βjωjΠjθ

∑J−1
i=0 βiωiΠiθ

+ κ(
βjωjΠjθ

∑J−1
i=0 βiωiΠiθ

− βjωjΠj(θ−1)

∑J−1
i=0 βiωiΠi(θ−1)

),

γj =
1
µ0

(ρj − δj) =
ω0∑J−1

i=1 ωiΠi(θ−1)
(

βjωjΠjθ

∑J−1
i=0 βiωiΠiθ

− βjωjΠj(θ−1)

∑J−1
i=0 βiωiΠi(θ−1)

),
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µ′j =
1
µ0

( j∑

i=1

~e[H(−B)i−1A][.,j−(i−1)] − µj

)
, µj = 0,∀j ≥ J − 1,

η0 =
1
µ0

1
1− θ

, ηj = − 1
µ0

j∑

i=1

~e[H(−B)i−1C][.,j−(i−1)], ∀j ≥ 1.

Note that ~e is a unity row vector with [(j + 1)(J − 1) − 1] elements and that the matrices H,

A, B and C are square matrices of order [(j + 1)(J − 1)− 1]. The subscript [., j − (i− 1)] then

denotes the column of matrix [H(−B)(i−1)A] and [H(−B)(i−1)C] which are pre-multiplied by ~e.
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Table 1: Model calibrations

Quarterly discount factor β = 0.984

Risk aversion σ = 1

Labor supply elasticity ∞
Labor share αL = 0.667

Demand elasticity θ = 10

Steady-state inflation πss = 3%, 6%

Adjustment costs:

Flat cdf c1 = 0.34 c2 = 0.02 c3 = 171.6 c4 = 1.513 B= 0.018

S-shaped cdf c1 = 0.52 c2 = 0.17 c3 = 178.4 c4 = 1.26 B= 0.014

Linear cdf c1 = 1.26 c2 = 1.00 c3 = 80.93 c4 = 0.90 B= 0.008

Notes: B = upper bound of price adjustment costs.

Table 2: SDPC and intrinsic persistence

πss = 3% πss = 6%

cdf µ′1
∑3J

j=1 µ′j D µ′1
∑3J

j=1 µ′j D

flat 0.198 0.297 3.9 0.190 0.341 3.0

S-shaped 0.280 0.409 4.2 0.370 0.421 3.1

linear 0.303 0.453 4.2 0.459 0.465 3.0

Notes: D = average duration of price stickiness in quarters.

35



Table 3: GMM estimates of the hybrid NKPC, data generated based on S-shaped cdf

πss Model λ̂ γ̂f γ̂b D̂ J*

3% tdp 0.027 ( 0.534 ) 0.574 0.426 3.8 0.970

[ 0.000 , 0.063 ] [ 0.464 , 0.710 ]

3% sdp 0.041 ( 0.304 ) 0.610 0.390 3.5 0.909

[ -0.009 , 0.103 ] [ 0.514 , 0.728 ]

6% tdp 0.069 ( 0.794 ) 0.566 0.434 2.7 0.981

[ 0.018 , 0.129 ] [ 0.479 , 0.692 ]

6% sdp 0.088 ( 0.395 ) 0.614 0.386 2.7 0.778

[ -0.017 , 0.198 ] [ 0.519 , 0.738 ]

Notes: γf + γb = 1,

D̂ = estimated average duration of price stickiness,

J∗ = proportion of 1000 simulations passing the J-test.
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Figure 1: NKPC curve in its SDPC representation, πss = 0%
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Figure 2: Cumulative distribution functions (cdf) of fixed adjustment costs.
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Figure 3: Characterization of price-setting behavior along steady state.
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Figure 4: SDPC coefficients across three adjustment cost cdf, πss = 3%.
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Figure 5: SDPC coefficients across three adjustment cost cdf, πss = 6%.
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Figure 6: Responses to an expansionary interest rate shock (100 basis points): high policy
inertia (ρ = 0.8) vs. no policy inertia (ρ = 0). SDP model with S-shaped distribution of
adjustment costs, πSS = 3%.
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Figure 7: Responses to an expansionary interest rate shock (100 basis points): SDP model
vs. TDP model. S-shaped distribution of adjustment costs, high policy inertia, (ρ = 0.8)
πSS = 3%.
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Figure 8: Responses to an expansionary interest rate shock (100 basis points): πSS = 3%
vs. πSS = 6%. SDP model with S-shaped distribution of adjustment costs, high policy
inertia (ρ = 0.8).
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Figure 9: Responses to an expansionary interest rate shock (100 basis points). SDP model
with S-shaped distribution of adjustment costs and πSS = 3% vs. model with estimated
hybrid NKPC: high policy inertia (ρ = 0.8).
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Figure 10: Responses to an expansionary interest rate shock (100 basis points). SDP
model with S-shaped distribution of adjustment costs and πSS = 6% vs. model with
estimated hybrid NKPC: high policy inertia (ρ = 0.8).
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