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Abstract

We show how low-frequency boom and bust cycles in asset prices can
emerge from Bayesian learning by investors. Investors rationally max-
imize infinite horizon utility but hold subjective priors about the asset
return process that we allow to differ infinitesimally from the rational ex-
pectations prior. Bayesian updating of return beliefs then gives rise to
self-reinforcing return optimism that results in an asset price boom. The
boom endogenously comes to an end because return optimism causes in-
vestors to make optimistic plans about future consumption. The latter
reduces the demand for assets that allow to intertemporally transfer re-
sources. Once returns fall short of expectations, investors revise return
expectations downward and set in motion a self-reinforcing price bust. In
line with available survey data, the learning model predicts return opti-
mism to comove positively with market valuation. In addition, the learn-
ing model replicates the low frequency behavior of the U.S. price dividend
ratio over the period 1926-2006.

JEL Class. No.: G12, D84

1 Motivation
Following the recent boom and bust cycles in a number of asset markets around
the globe there exists renewed interest in understanding better the factors con-
tributing to the emergence of such drastic asset price movements. This paper
adds to this task by constructing a very simple asset pricing model in which
learning by investors gives rise to endogenously driven low-frequency waves of
optimism and pessimism which are associated with sustained asset price booms
and busts. These phenomena occur although all investors behave individually

∗Thanks go to Fernando Alvarez, Chryssi Giannitsarou, Mike Woodford, conference par-
ticipants at the Banque de France and Chicago Fed Conference on Asset Price Bubbles, and
seminar participants at Columbia University for helpful comments and suggestions. All errors
remain ours.
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rational, i.e., maximize expected infinite horizon utility under a consistent set
of beliefs which are updated using Bayesian learning.
The model we construct is close to a standard Lucas (1978) asset pricing

model but considers investors that possess only limited knowledge about the
equilibrium behavior of asset returns. Specifically, we allow investors to hold
subjective prior beliefs about the return process that differ slightly from those
entertained by agents in the rational expectations equilibrium (REE). We then
show that agents’ attempts to improve their knowledge can give rise to self-
reinforcing asset price dynamics that generate large deviations from RE prices,
even if agents’ prior beliefs are arbitrarily close to RE priors. Importantly, these
deviations take the form of low-frequency boom and bust cycles in asset prices.
While investors may hold subjective prior beliefs about returns, investors

are ‘internally rational’ in the sense of Adam and Marcet (2009). Specifically,
all investors make contingent plans to maximize infinite horizon utility and hold
complete and consistent set of probability beliefs about payoff relevant variables.
The decision theoretic microfoundations underlying our learning model distin-
guishes it from much of the earlier learning literature and has the advantage
that the present model can serve also to answer important normative questions,
although addressing these is beyond the scope of this paper.
Imperfect information about the return process has strong implications for

asset prices because agents then use past return realizations to learn about
the stochastic process governing returns. Such learning from past observations
tends to generate momentum in asset price behavior to the extent that agents
become more optimistic (pessimistic) about the return process whenever they
are positively (negatively) surprised by realized returns. This is so because
increased optimism (pessimism) increases (decreases) investors’ asset demand,
if the intertemporal elasticity of substitution is larger than unity. Increased
(decreased) asset demand in turn leads to further price increases (decreases),
thereby reinforcing the initial tendency of increased optimism. As a result,
asset prices changes tend to display low frequency momentum, which gives rise
to sustained price increases and decreases.
After a sequence of sustained changes countervailing forces come into play

that dampen the price momentum, eventually halt it and lead to a reversal.
Consider a situation where increased return optimism has given rise to an asset
price boom. Investors’ return optimism induces them to also make optimistic
plans about future consumption. This causes the marginal rate of substitution
to fall, thereby reduces agents’ demand for assets that allow to transfer resources
into the future. As a result, price increases eventually come to an end. At this
point, however, agents’ return beliefs turn out to be too optimistic relative to
the actual return data because large part of returns in the past has been fueled
by increases in investor optimism. The subsequent downward revision in beliefs
induce negative price momentum and may even cause prices to undershoot their
fundamental value substantially and for prolonged periods of time. The effect
of future consumption plans then eventually works in reverse and halts this
downward momentum.
We show how our simple learning model is able to replicate the low fre-
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quency behavior of the price dividend ratio in the United States over the period
1926-2006 and is consistent with survey evidence on investors’ return expecta-
tions that is available for the internet boom and bust period between 1998 and
2003. Specifically, the learning model is consistent with the empirical evidence
that investors’ return expectations correlate positively with market valuation
(the price dividend ratio) over this period, i.e., that investors’ return expecta-
tions were highest at the peak of the internet boom period in early 2000. As
we explain in the next section, the rational expectations hypothesis counterfac-
tually predicts this correlation to be negative. To the best of our knowledge,
the present paper presents the first microfounded asset pricing model that is
consistent with the observed survey data.
The learning model we present offers a mechanism for generating asset price

booms and busts that is complementary to leading explanations in the ratio-
nal expectations literature, e.g. Campbell and Cochrane (1999) or Bansal and
Yaron (2004). In these latter models, asset price fluctuations are the results of
time-variation in risk-aversion or stochastic discount factors and therefore fully
efficient. In the present model, the low frequency fluctuations in asset prices are
not the result of low frequency components in the stochastic discount factor -
agents in our model have standard time separable utility functions - but are due
to self-reinforcing endogenous dynamics of investor optimism and pessimism.
This suggests that some of the low frequency fluctuations in asset prices that
can be observed in the data might be inefficient in the sense of not being the
result of changes in fundamentals. Since our model is fairly stylized, e.g., does
not take into account important changes in the tax code over time, we do not
attempt to decompose to what extent the empirically observed fluctuations are
efficient or inefficient.
In a related paper Adam, Marcet, and Nicolini (2009) show that a simple

asset pricing model with learning can explain the behavior of second moments of
asset prices and that such a model can quantitatively replicate a large number
of otherwise puzzling asset price phenomena within a very parsimonious setup.
This earlier model, however, could not address the issue of boom and bust be-
havior in asset prices because the assumed exogeneity of the stochastic discount
factor implied that asset price booms would often not come to an end, which
required imposing an exogenous upper bound on agents’ beliefs (a so-called pro-
jection facility).1 While the earlier model’s ability to match second moments
of asset prices turned out to be very robust to the precise value chosen for the
upper bound, such a model is clearly not suited to address the issue of asset
price booms and busts.
Unlike in our earlier work, the present paper considers a model with risk

aversion and endogenous discount factors, where stock holding plans and con-
sumption plans interact, so that booms endogenously come to a halt due to the
discount factor effects described above. This feature gives rise to a number of
technical difficulties. First, to determine the stochastic discount factor, one has

1Booms could also end endogenously, but more often than not the exogenous bound trig-
gered the end of an asset price boom.
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to solve for agents’ optimal state contingent consumption plans which requires
solving a non-trivial non-linear optimization problem. Second, since agents are
learning, their Bayesian posterior becomes a state variable in their optimization
problem. Despite these features, we are able to derive a closed form solution
for the equilibrium asset price under learning in the limiting case of vanish-
ing uncertainty, which allows us to illustrate most of our findings analytically.
The paper also outlines a numerical solution strategy for the general case with
non-vanishing uncertainty.
The present paper also extends the analysis in Adam and Marcet (2009)

which considers a risk-neutral asset pricing model and spells out the decision
theoretic foundations when agents hold subjective priors about the price process.
This paper considers a setting with non-linear utility and provides Bayesian
microfoundations for constant gain learning mechanisms, as well as for the in-
formation lag in the agents’ updating equations. Moreover, none of our earlier
contributions dealt with asset price boom and bust cycles, with matching the
historical time series of the US PD ratio, or with survey expectations of stock
market returns.
Models of learning have been used before to explain some aspects of asset

price behavior. Timmermann (1993, 1996), Brennan and Xia (2001), Cogley
and Sargent (2008) and Veronesi (2003) consider Bayesian learning to explain
various aspects of stock prices. These authors consider agents who learn about
the dividend process and set the asset price equal to the discounted expected
sum of dividends. This approach is less able to explain asset price volatility:
while agents’ beliefs about the dividend process influence market prices, agents’
beliefs remain unaffected by market outcomes because agents learn only about
an exogenous driving process. Agents in our setting are learning about the
behavior of market determined variables (asset returns). Other related papers
by Bullard and Duffy (2001) and Brock and Hommes (1998) show that learn-
ing dynamics can converge to complicated attractors, if the RE equilibrium is
unstable under learning dynamics.2 Branch and Evans (2006) study a model
where agents’ algorithm to form expectations switches depending on which of
the available forecast models is performing best. Also related is Cárceles-Poveda
and Giannitsarou (2007) who assume that agents know the mean stock price
and learn only about deviations from the mean; they find that the presence of
learning does then not significantly alter the behavior of asset prices.3

The paper is structured as follows. The next section presents evidence on
boom and bust cycles in stock markets. It also discusses survey evidence on
investors’ return expectations and critically discusses to what extend the ratio-
nal expectations hypothesis is consistent with the available evidence. Section 3
presents the asset pricing model and section 4 determines for benchmark pur-
poses its Rational Expectations Equilibrium. Section 5 explains how we relax
agents’ prior beliefs about return expectations and derives the resulting Bayesian
updating equations. After defining the market equilibrium condition in section

2Stability under learning dynamics is defined in Marcet and Sargent (1989).
3Cecchetti, Lam, and Mark (2000) determine the misspecification in beliefs about future

consumption growth required to match the equity premium and other moments of asset prices.
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6 we derive a closed form solution for the equilibrium asset price in section 7
for the case with vanishing uncertainty. Section 8 then illustrates the boom and
bust episodes to which the learning model gives rise. Section 9 illustrates the
model’s ability to replicate the low frequency variation of the US price dividend
ratio. Section 10 briefly discusses a numerical solution approach for the general
case with non-vanishing risk.

2 Stock Market Booms and Busts: Data and
Interpretation

This section discusses the empirical evidence on stock market boom and bust
behavior and the implication of such behavior for stock market returns. We
then discuss to what extend actual stock market return behavior is reflect in
investors’ expectations as measured by survey evidence.

2.1 Stock Market Prices and Returns

Perhaps not surprisingly, many stock markets historically experienced substan-
tial and sustained price increases that were followed by sustained and long last-
ing price reversals. Figures 1 - 3 illustrate this behavior for the United States,
the Euro Area (using synthetic data before its creation) and Japan, respectively,
since the mid 1970’s.4 The figures depict the quarterly price dividend (PD) ra-
tio as well as their HP trend which eliminates high frequency variation in price
dividend movements.
In the United States the PD ratio increased more than threefold in the 1990’s

and then dropped by more than 30% from its peak level after the turn of the
century. The Euro Area experienced two cycles over the considered period, with
the first starting in the early 1980’s and coming to an end around 1990 and the
second coinciding with the one in the United States. In both European cycles the
PD ratio roughly doubled during the boom and later on approximately reverted
to pre-boom levels. Japan also experienced large stock price fluctuations. The
PD ratio increased more than four-fold from the mid 1980’s until the end of
the decade, and subsequently collapsed to one half its peak value. Japan also
experienced a second sizable but less persistent increase and reversal around the
turn of the century, in line with the experience in Europe and the U.S. at the
time.
The previous evidence shows that at low frequencies the PD ratio in major

stock markets displays substantial momentum, i.e., there are periods in which
increases in the PD ratio tend to be followed by further increases, as well as
periods in which decreases tend to be followed by additional decreases. This
behavior of the PD ratio can be observed in all three stock markets.
The persistence in the change of the PD ratio documented above implies

that stock market returns themselves display persistent low frequency variation

4The data sources are described in appendix A.
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Figure 1: Quarterly PD Ratio and HP Trend
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Figure 2: Quarterly PD Ratio and HP Trend
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Figure 3: Quarterly PD Ratio and HP Trend

over time. This follows from the following simple considerations. Define the
asset return Rt+1 between period t and t+ 1 as

Rt+1 =
Pt+1 +Dt+1

Pt

where P denotes the stock price and D dividends and use the approximation

Rt+1 =

Pt+1
Dt+1

+ 1

Pt
Dt

Dt+1

Dt
≈

Pt+1
Dt+1

Pt
Dt

Dt+1

Dt

which is valid for sufficiently large PD ratios. The previous expression reveals
that persistent increases (decreases) in the PD ratio imply persistently high
(low) average stock returns, provided dividend growth is uncorrelated or at
least not negatively correlated with the changes in the PD ratio, as is actually
the case in the data. We can thus summarize the previous discussion as follows:

Observation 1: Changes in the PD ratio display persistence and average
stock market returns display persistent time variation.

As has been observed before, the PD ratio also has a tendency to mean
revert, i.e., sustained increases in the PD ratio - asset price booms - are often
partially reversed during subsequent asset price busts. Such behavior took place
in all three stock markets around the turn of the millennium, for example. The
mean reverting behavior of the PD ratio suggests that future holding period
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returns are negatively associated with the level of the PD ratio.5 Specifically,
at times where the PD ratio is high, future excess returns are below average.
This is illustrated in Table 1 below, which reports the regression coefficient c1,
the standard deviation of the coefficient estimate in brackets, and the R2 value
of the following regression

Xt,t+k = c0 + c1
Pt
Dt

where Xt,t+k denotes the excess returns of stocks over bonds from period t to
t+k and Pt/Dt the price dividend ratio in period t. The table shows that a high
PD ratio is associated with below average excess returns in all markets, i.e., c1
is negative, and that the R2 of the regression is increasing with the prediction
horizon.6 This empirical relationship is confirmed, for example, in Campbell
(2003) for a number of additional stock markets and time periods.
We summarize the previous findings as follows:

Observation 2: The PD ratio is mean reverting and a high (low) PD ratio
predicts future stock market returns to be below (above) average.

EMU U.S. Japan
Quarters (1984-2006) (1974-2006) (1974-2006)
k c1 R2 c1 R2 c1 R2

4 -0.20 (0.06) 0.06 -0.0426 (0.02) 0.06 -0.20 (0.035) 0.21
8 -0.16 (0.06) 0.11 -0.0422 (0.01) 0.10 -0.21 (0.02) 0.44
12 -0.16 (0.02) 0.24 -0.0432 (0.01) 0.16 -0.19 (0.01) 0.54

Table 1: Excess Return Predictability

The rational expectations asset pricing literature has offered a consistent ex-
planation for the observed momentum and mean reverting behavior of the PD
ratio (and of returns) by considering asset pricing models in which investors’
stochastic discount factor is varying over time. If the stochastic discount factor
displays persistent changes and slow moving and mean reverting drifts, e.g.,
as in Campbell and Cochrane (1999), then asset price valuations display cor-
responding persistent changes and drifts, consistent with Observations 1 and 2
above. The next section assesses to what extent the return expectations implied
by the REH actually receive support in the data.

5As before, this assumes that dividend growth is uncorrelated or at least not negatively
correlated with the changes in the PD ratio.

6Due to the difficulties associated with defining the risk free rate, the sample period for
the European Monetary Union had to be shortened to start in 1984.
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Figure 4: Average 1 year ahead stock market return expectations of US in-
vestors, UBS/Gallup Survey Data.

2.2 Expected Stock Market Returns

Observation 2 above implies that agents whose return expectations are rational
should expect future stock market returns to be low whenever the PD ratio
is high. Observation 2 and the REH thus suggest that at the beginning of the
year 2000 when the new economy stock market boom reached its peak, investors
have been aware that the expected future returns on their investments would
be exceptionally low.7 Arguably, this is hard to believe on a priori grounds
and we document below that this implication of the REH is inconsistent with
available survey evidence on expected stock market returns: rather than being
pessimistic, investors appear to have been particularly optimistic about returns
when the stock price was highest.
Figure 4 which is taken from Vissing-Jorgensen (2003) illustrates this fact.

The figure depicts the time series of the average one year ahead stock market
return expectations of a representative sample of 1000 U.S. investors from 1998
until the end of 2002. The data is taken from the UBS Gallup Survey and to
qualify a household must own at least 10.000 US$ in financial assets. The survey
data show that investors’ return expectations are rather high in 1999, peak at
the beginning of 2000, and gradually come down in the following years. The
peak in expected returns thus coincides with the peak of the Nasdaq market,
suggesting that market return expectations fail to be negatively associated with
market prices, unlike predicted under the REH. Instead, there seems to exist a
positive correlation.
It is likely that figure 4 understates the positive correlation between time

variation in investors’ return expectations and asset prices. This is so because

7Paying a high price for the asset is still rational, if agents’ discount factors are exceptionally
high so that the returns that agents require for holding risky stocks are even lower than the
returns they expect ex ante. This point goes back to Fama and French (1988).
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Figure 5: Cross-sectional standard deviation of return expectations.

by averaging the return expectations of investors one implicitly assumes that all
investors matter equally for equilibrium asset prices. It appears reasonable to as-
sume, however, that asset prices are influenced more heavily by richer investors,
and - to the extent that short-sale constraints are effective - by the expectations
of the most optimistic investors. Figure 5, which is taken from Vissing-Jorgensen
(2003), displays the cross sectional standard deviation of return expectations.
It shows that the cross sectional dispersion comoves positively with the level of
return expectations. This is the case for all investors in the survey as well as for
those investors holding financial wealth of more than 100.000 US$. This shows
that the expected returns of more optimistic investors are even more positively
associated with market prices than the average expected returns depicted in
figure 4.

The conclusion that can be reached at this point is that there appears to be a
positive correlation between asset valuation and investors’ return expectations,
unlike predicted by Observation 2 and the REH. We summarize this as follows:

Observation 3: High asset prices appear to be associated with overly op-
timistic return expectations.

Observation 3 is inconsistent with Observation 2 and the REH and sug-
gests that time varying discount factor models in combination with the REH
do not offer a complete description of asset price boom and bust movements.
Indeed, observation 3 suggests that a potentially important factor contributing
to exceptionally high levels of asset prices are what appears ex-post as overly
optimistic return expectations. This is consistent with the evidence provided in
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Bacchetta et al. (2009) who document for a wide range of asset markets that the
same variables that predict excess returns also predict the expectational errors
of investors. Specifically, Bacchetta et al. (2009) show that a high PD ratio
in stock markets predict that agents are too optimistic about future returns.
The asset pricing model with learning that we construct in the next section is
consistent with this finding. In particular, it is able to replicate Observations 1
to 3 and thus improves upon RE based explanations which are unable to match
Observations 2 and 3 at the same time.

3 The Asset Pricing Model
We consider a simple endowment economy populated by a unit mass of infinitely
lived agents trading one unit of a stock in a competitive stock market. Each
period the stock yields Dt units of the unique perishable consumption good.

The Investment Problem. Investor i ∈ [0, 1] solves the following infinite
horizon maximization problem:

max
{Ci

t≥0,Sit∈[0,S]}∞t=0
EPi
0

" ∞X
t=0

δt
¡
Ci
t

¢1−γ
1− γ

#
(1)

s.t.

SitPt + Ct = Sit−1 (Pt +Dt) for all t ≥ 0 (2)

Si−1 = 1 given

where Ci denotes consumption, Si the agent’s stockholdings, D dividends, P
the (ex-dividend) price of the stock and Pi the agent’s subjective probability
measure, which may or may not satisfy the rational expectations hypothesis.
Details of Pi will be specified below. Problem (1) specifies that the agent can
not go short on assets, i.e., it imposes the constraint Si ≥ 0. This short sale
constraint is a consequence of the constraint Ct ≥ 0 because covering any short
position would eventually require negative consumption. We also impose some
arbitrarily large but finite upper bound on stock holding Si ≤ S ∈ (1,∞), which
limits the long positions an investor can take. This constraint is introduced for
technical reasons only - it insures compactness of the decision space - and S is
assumed to be sufficiently large so that it does not bind in equilibrium
We assume that the intertemporal elasticity of substitution satisfies

γ−1 > 1

The interpretation of γ as a parameter governing intertemporal substitution
rather than agents’ risk aversion is justified because we will largely eliminate risk
considerations from the model later on. The assumption of a more than unitary
substitution elasticity then insures that the substitution effect of intertemporal
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relative price changes dominates the income effect, which turns out to be crucial
for the results that follow.8

Substituting the constraint into the objective delivers the following alterna-
tive description of the investment problem:

max
{St∈[0,S]}∞

t=0

EP
i

0

" ∞X
t=0

δt
¡
Sit−1 (Pt +Dt)− SitPt

¢1−γ
1− γ

#
(3)

s.t.

Sit−1 given

Note that we have dropped the constraint Ci
t ≥ 0. Since marginal utility of

consumption increases without bound as at Ct → 0 interior solutions are nev-
ertheless guaranteed.

The Underlying Probability Space. We now construct the underly-
ing probability space. Agents hold a consistent but potentially less-than-fully-
rational set of beliefs about all variables that are beyond their control. In the
present setup this comprises beliefs about dividends and competitive market
prices and potentially beliefs about unknown parameters governing the price
and dividend processes. Let Ω denote the space of possible realizations for infi-
nite sequences of dividends and prices. A typical element ω ∈ Ω is then given
by ω = {Pt,Dt}∞t=0. As usual, Ωt denotes the set of price and dividend histo-
ries from period zero up to period t and ωt its typical elements. The agent’s
plans will be contingent on the history of prices and dividends ωt, i.e., the agent
chooses

Sit : Ω
t → [0, S] (4)

The corresponding state-contingent consumption process is determined by (4)
and the budget constraint (2). The underlying probability space is then given
by (Ω,B,Pi) with B denoting the corresponding σ-Algebra of Borel subsets of
Ω, and Pi a probability measure over (Ω,B). We make the following assumption

Assumption 1: For all t and all ωt with Pt <∞ and Dt <∞, the probability
measure Pi satisfies:

EP
i

t

⎡⎣ ∞X
j=0

δj
(Pt+j +Dt+j)

1−γ

1− γ

⎤⎦ <∞ (5)

Condition (5) requires that price and dividend beliefs are not ‘too optimistic’.
Overly optimistic beliefs may pose a problem because they can give rise to a
situation where subjective expected utility is infinite, so that problem (3) does
not have a well defined solution. Condition (5) is a sufficient condition insuring

8Bansal and Yaron (2004) equally require intertemporal elasticity of substitution to be
larger than one.
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that the maximum achievable utility is finite whenever the current price and
dividend are finite.9

Existence of Optimal Plans. Since γ−1 > 1 the flow utility is positive
each period and thus bounded below. Assumption 1 insures that the objective
is bounded above as long as current price and dividend are finite so that the
objective function is continuous in these cases. Since the choice set is compact
and non-empty in S, a maximum for problem (3) exists provided the current
price and dividend are finite.

Sufficiency of First Order Conditions and Uniqueness of Optimal
Plans. Provided the current price and dividend are finite the first order con-
ditions are then necessary and sufficient for achieving a maximum because the
objective (3) is strictly concave in St and because the choice set is convex in St.
Moreover, strict concavity implies that the optimal policy is unique, so that
the optimal stock holding policy is described by a function rather than by a
correspondence.

The previous results justify working with the first order conditions of prob-
lem (3). Defining the asset return

Rt+1 =
Pt+1 +Dt+1

Pt
(6)

the first order conditions of problem (3) characterizing optimal investment be-
havior can be written as

C−γt < δEP
i

t

h
(Ct+1)

−γ Rt+1

i
and St = S (7a)

C−γt = δEP
i

t

h
(Ct+1)

−γ Rt+1

i
and St ∈

£
0, S

¤
(7b)

C−γt > δEP
i

t

h
(Ct+1)

−γ
Rt+1

i
and St = 0 (7c)

Clearly, inequality (7c) will (a.s.) never bind in the optimum. Selling all assets
is suboptimal because it implies that consumption in subsequent periods is zero
so that marginal utility of consumption is infinite. Likewise by choosing S
sufficiently large, the upper inequality will not bind. This allows us to focus

9This follows from:

max
Sit+j∈[0,S]

∞
j=0

EP
i

t

⎡⎢⎣ ∞
j=0

δj
Sit+j−1 (Pt+j +Dt+j)− Sit+jPt+j

1−γ

1− γ

⎤⎥⎦
≤ EP

i

t

⎡⎣ ∞
j=0

δj
S (Pt+j +Dt+j)

1−γ

1− γ

⎤⎦
=

S
1−γ

1− γ
EP

i

t

∞

t=0

δj (Pt+j +Dt+j)
1−γ
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on equation (7b). Using the budget constraint and the definition (6) future
consumption can be expressed as

Ct+1 = (St − St+1)Pt+1 + StDt+1

= (St − St+1) (PtRt+1 −Dt+1) + StDt+1

= (St − St+1)PtRt+1 + St+1Dt+1

so that the FOC (7b) can alternatively be written asµ
(St−1 − St)

Pt
Dt

+ St−1

¶−γ
= δEP

i

t

"µ
(St − St+1)

Pt
Dt

Rt+1 + St+1
Dt+1

Dt

¶−γ
Rt+1

#
(8)

The previous equation illustrates that evaluating the first order conditions re-
quires that agents formulate beliefs about dividend growth and asset returns
one period ahead. Agents’ current economic situation is thereby described by
the stocks that they purchased in the previous period (St−1), the current price
dividend ratio (Pt/Dt) at which they can trade the asset and by their beliefs
Pi|ωt. The solution to FOC (8) is a stock demand function S(St−1, Pt/Dt, ω

t)
that specifies how much assets to demand as a function of previous stock hold-
ings, the current price dividend ratio and the beliefs about the future, which
are potentially a function of the entire history ωt.

4 Rational Expectations (RE) Equilibrium
This section specifies a dividend process and determines the resulting equilib-
rium outcome when agents’ beliefs Pi are rational. The standard assumption
in the literature is to assume that dividends evolve according to

lnDt = lnDt−1 + lnβ
D + ln εDt (9)

with

ln εDt ∼ N(−σ
2
D

2
, σ2D) (10)

so that βD > 0 denotes dividend growth and εDt is a shock to dividend growth
with mean 1.
Appendix B shows the following results. When agents know (9) and hold

rational price expectations, then the FOC (8) implies a constant price dividend
ratio which is given by

PDRE =
δβRE

1− δβRE
(11)

βRE =
³
βD
´1−γ

e−γ(1−γ)
σ2D
2 (12)
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The equilibrium price under rational expectations thus follows

lnPt = lnPt−1 + lnβ
D + εDt (13)

and stock returns under RE are given by:

lnRt = lnR+ ln ε
D
t (14)

with

R =
δ−1

³
βD
´γ

e−γ(1−γ)
σ2
D
2

The mean stock return in the Rational Expectations Equilibrium is thus con-
stant over time. For the case with vanishing risk (σ2ε → 0) that we consider
below, the previous solution simplifies to the perfect foresight outcome

lnDt = lnDt−1 + lnβ
D (15)

lnRt = ln
³
δ−1

³
βD
´γ´

(16)

Pt
Dt

=
δ
³
βD
´1−γ

1− δ
³
βD
´1−γ

5 Learning about Return Behavior
We now relax the Rational Expectations Hypothesis and endow agents with a
model of the asset return process that is slightly more general than the behavior
of returns (14) emerging in the rational expectations equilibrium. Specifically,
we consider agents who doubt that the mean asset return is constant over time
and instead believe that mean returns may drift over time. This is in line with
the empirical observations made in section 2. In the special case with vanishing
risk, which we will consider later on, this generalized return process converges
to the perfect foresight rational expectations outcome (16). Agents’ prior beliefs
thus converge to the RE priors in this limiting case, so that the deviations from
the RE beliefs become arbitrarily small.
To emphasize the importance of learning about returns rather than learning

about dividend behavior, which was the focus of much of the earlier literature
on learning in asset markets, e.g., Timmermann (1993, 1996), we continue to
assume that agents know the dividend process (9), i.e., hold rational dividend
expectations.

Generalized Return Beliefs. For simplicity we consider a situation where
all agents i hold the same beliefs. We thus drop the superscript i from agents’
probability measure. In the REE the asset return process is composed of a
constant mean and an unpredictable component, see equation (14). In the
data, however, returns display persistent time variation, as discussed in section
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2. To capture this feature we now suppose that agents entertain the following
generalized model for asset returns

lnRt = lnRt + ln εt (17)

where εt is a transitory component and Rt denotes a persistent time varying
return component which follows the process

lnRt = lnRt−1 + ln ν (18)

The disturbances are given byµ
ln εt
ln νt

¶
∼ iiN

ÃÃ
−σ2ε

2

−σ2v
2

!
,

µ
σ2ε 0
0 σ2ν

¶!
(19)

and are assumed independent of the dividend innovations εD. The specification
(17) implies that return innovations are unpredictable but that expected returns
vary over time in a persistent way. Specifically, there exist periods in which
expected returns are high (Rt > R) and periods with low returns (Rt < R). We
assume that the agents’ prior beliefs about the persistent component are given
by

lnR0 ∼ N(lnm0, σ
2
0) (20)

and that these are independent of εt, εDt and νt for all t. Equations (17)-(20)
together with knowledge of the dividend process (9) jointly specify agents’ prob-
ability beliefs Pi.10

Learning about Returns. The agent can observe the asset return Rt but
can not directly tell which part of the observed return is due to the persistent
component Rt and which part due to the transitory element εt. Instead, agents
formulate beliefs about the persistent return component lnRt using standard
(Bayesian) filtering techniques. Assuming that agents know σ2ε and σ

2
ν , Bayesian

updating of beliefs implies that (e.g. Theorem 3.1 in West and Harrison (1997))

lnRt|ωt ∼ N(mt, σ
2
t )

with

lnmt = lnmt−1 + g

µ
lnRt +

σ2ε + σ2v
2

− lnmt−1

¶
(21)

σ2t = σ20 =
−σ2ν +

q
(σ2ν)

2
+ 4σ2νσ

2
ε

2
(22)

g =
σ20
σ2ε

(23)

10The price pricess implied by Pi follows recursively from equation (6).
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where we have chosen the prior uncertainty σ20 about the unobserved state R0
to be equal to its steady state value. Agents’ beliefs are thus summarized by a
single state variable (mt) which evolves recursively according to equation (21).

Appendix C proves the following result:

Proposition 1 The beliefs P defined by equations (9)-(10) and (17)-(20) sat-
isfy assumption 1.

The previous proposition implies that maximum achievable utility is finite,
provided Pt < ∞ and Dt <∞, so that optimal plans exist and can be charac-
terized using the first order conditions of the investment problem.

How this nest RE beliefs. The belief specification (9)-(10) and (17)-(20)
nests RE beliefs in the special case with vanishing risk. Specifically, consider the
limiting case without uncertainty where

¡
σ2ε, σ

2
ν , σ

2
εD

¢
→ 0. If at t = 0 agents

initial belief about the persistent return component is centered at the perfect
foresight outcome (16), as we assume from now on, i.e., if

lnm0 = ln
³
δ−1

³
βD
´γ´

then agents’ prior probability mass about returns increasingly concentrates at

the perfect foresight outcomemt = δ−1
³
βD
´γ
for all t, as noise vanishes. This is

the case because prior uncertainty then vanishes (σ20 → 0) as well as the variance
of the return innovations σ2ε and σ2ν . Since agents’ dividend expectations are
rational, agents prior beliefs P then approach the perfect foresight outcome (15)-
(16). The limiting Kalman gain parameter g is thereby determined by equations

(22) and (23) which implicitly define σ2ν
σ2ε
→ g2

4−2g . Since g will generally not
converge to zero as noise vanishes, one can study learning dynamics even in the
limiting case with vanishing risk.

6 Market Equilibrium
The belief specification introduced in the previous section implies that agents’
beliefs about returns are summarized by a single state variable, namely the
mean belief about the permanent return component lnmt. The asset demand
function solving the first order condition (8) therefore takes the form

S(St−1,
Pt
Dt

, lnmt) (24)

Normalizing total asset supply to one and imposing market clearing in all
periods implies that the equilibrium price dividend ratio and beliefs in period t
must solve

1 = S(1, Pt/Dt, lnmt) (25)
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The current beliefs lnmt and the current price dividend ratio Pt/Dt are deter-
mined simultaneously via equations (21) and (25). Generally, there may thus
exist multiple market clearing pairs for the PD ratio and agents’ beliefs. This
potential for multiplicity arises from the complementarity between realized re-
turns and expected future returns. Intuitively, a higher PD ratio also implies
higher asset returns and thus higher expected future returns via equation (21).
Higher expected future returns may then induce agents to be willing to buy the
asset at a higher price. While this multiplicity may be a potentially interesting
avenue to explain asset price booms and busts, we wish to abstract from such
simultaneities between beliefs and outcomes, as this would require us to select
between multiple market clearing prices.
Instead, we slightly modify the information setup for agents. The modifi-

cation implies that the Bayesian posterior estimate depends on lagged returns
only which eliminates the simultaneity problem. Specifically, we generalize the
perceived return process (17) by splitting the temporary return innovation ln εt
into two independent subcomponents

lnRt = lnRt + ln ε
1
t + ln ε

2
t

where ln ε1t ∼ N(−σ2ε,1
2 , σ2ε1) and ln ε

2
t ∼ N(−σ2ε2

2 , σ2ε2) and σ2ε = σ2ε1 + σ2ε2.
We then assume that agents observe the innovations ε1 with a one period lag,
i.e.,

©
ε1t−1, ε

1
t−2, ...

ª
is part of agents’ time t information set. One possible

interpretation of this setup is that agents learn over time something about the
temporary return components. Although agents observe only the lagged values
of ε1, they continue to observe the contemporaneous values of all other variables.
The process for the persistent return component lnRt remains as in equation
(18) but now has innovation variance σ2v instead σ2v. Appendix D proves the
following result:

Proposition 2 Consider the limit σ2ε2 → 0 and let σ2ε1 = σ2ε − σ2ε2 and σ2v =
σ2ε2g

2/(1 − g). The Bayesian posterior mean of lnRt using information up to
period t is then given by

lnmt = lnmt−1 + g (lnRt−1 − lnmt−1) (26)

The modified information structure thus implies that only lagged returns
Rt−1 enter the current state estimate. Intuitively, this is so because lagged
returns become infinitely more informative relative to current returns as σ2ε2 →
0. This eliminates the simultaneity problem. 11

With this change, agents’ beliefs lnmt are predetermined at the time the
market clears and the equilibrium price materializes, thereby eliminating any si-
multaneities. The economy then evolves according to a simple recursive process:

11Note that equation (26) does not contain the Jensen inequality term (σ2ε+σ2v)/2 showing
up in equation (21). In the limiting case with vanishing noise that we consider below, this
difference will also vanish so that the modified information structure just replaces Rt by Rt−1
in the updating equation.
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given the beliefs lnmt, equation (25) determines the market clearing price div-
idend ratio for period t; equation (26) in turn determines how the beliefs are
updated using this information. Equation (25) then determines the equilibrium
price in the subsequent period, and so on.

7 Solving the Learning Model
The learning model has a closed form solution in the limiting case with van-
ishing risk, i.e., (σ2ε, σ

2
ν , σ

2
εD) → 0. This limiting case is of interest because the

generalized probability measure P that we specified in section 5 then converges
to the perfect foresight RE outcome, so that the deviations beliefs from the
prior beliefs that agents are assumed to entertain in the rational expectations
equilibrium become arbitrarily small.
The following proposition summarizes the main result of this section. The

proof is contained in appendix E.

Proposition 3 Under vanishing uncertainty, i.e.,
¡
σ2ε, σ

2
ν , σ

2
εD

¢
→ 0, the equi-

librium price is given by

Pt
Dt

+ 1 =
∞X
j=0

µ³
δ
1
γ

´jYj

i=1

¡
EPt Rt+i

¢ 1−γ
γ

¶
(27)

The result of the previous proposition holds true independently of the belief
specification we assume for agents. For the belief specification from section 5
and with vanishing risk we have that

EPt Rt+i = mt

for all i ≥ 0. Proposition 3 then implies that the equilibrium price dividend
ratio is

Pt
Dt

=

³
δ (mt)

1−γ
´ 1
γ

1−
³
δ (mt)

1−γ
´ 1
γ

(28)

More optimistic return expectations (higher mt) thus imply a higher asset price
as long as intertemporal substitution elasticity satisfies γ−1 > 1. The learning
model thus associates high values of the price dividend ratio with optimistic
return expectations, unlike rational expectations models.
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The actual asset returns implied by equation (28) are given by

Rt =
Pt +Dt

Pt−1

=
Pt
Dt
+ 1

Pt−1
Dt−1

Dt

Dt−1

=
1−

³
δ (mt−1)

1−γ
´ 1
γ

1−
³
δ (mt)

1−γ
´ 1
γ

1³
δ (mt−1)

1−γ
´ 1
γ

Dt

Dt−1
(29)

This equation together with the belief updating equation

lnmt+1 = lnmt + g (lnRt − lnmt) (30)

jointly determines the evolution of returns and beliefs.12 The implied path for
the price dividend ratio under learning follows from equation (28).

Since
³
δ (mt−1)

1−γ
´ 1
γ

will take on values close to one, the behavior of actual

asset returns (29) is dominated by the behavior of the first fraction in (29).
Specifically, if agents have become more optimistic mt > mt−1 then realized
returns will also increase. Since realized returns are used to update beliefs,
see equation (30), there will be a tendency for beliefs to increase further, i.e.,
mt+1 > mt.
Suppose, for example, that agents hold beliefs consistent with the perfect

foresight RE outcome. The sensitivity of realized returns with respect to the
current return expectations mt is then given by

∂Rt

∂mt

¯̄̄̄
mt=mt−1=δ−1(βD)

γ
=
1− γ

γ

δ−1
³
βD
´1+γ

1− δ
³
βD
´1−γ

Taking the approximation βD = 1 we have that ∂Rt
∂mt

> 1 whenever γ < δ.
Since δ is close to one, the learning model displays momentum of returns and
return expectations around the RE as long as the intertemporal elasticity of
substitution is somewhat larger than one. Specifically, if return expectations
increase above (fall below) the RE value, realized returns will also increase
(decrease) but stronger than expected returns, so that future return expectations
are even higher (lower).
The next section investigates more closely the behavior of the model under

learning.

12As discussed before, the Kalman gain parameter g is implicitly defined by σ2ν
σ2ε
→ g2

1−g and

depends on the relative variance of the transitory and persistent return shocks in the limit.
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8 Asset Price Booms and Busts from Learning
This section illustrates the behavior of the model under learning using the closed
form solution derived in the previous section. It shows that the model strongly
propagates initial shocks to return expectations and gives rise to low frequency
movements in asset prices similar to the ones we observed when discussing the
empirical evidence in section 2. We also show that the model can give rise to
asymmetric asset price fluctuations, e.g. a protracted asset price boom that is
followed by a sharper and faster asset price bust. Conversely, starting from the
RE price level a decrease in return expectations sets in motion a relatively sharp
asset price bust which tends to be followed by a slow and long-lived recovery of
the price dividend ratio.
To illustrate these model properties we use the following baseline para-

meterization. We set the quarterly discount factor to δ = 0.995 and choose
βD = 1.0035, which is the value for quarterly US dividend growth used in
Adam, Marcet and Nicolini (2009). We then choose γ = 0.8 and set the gain
to g = 0.014 so that agents attribute 1,4% of any return observation to the
persistent component and 98,6% to the transitory component. We discuss the
robustness of our findings to alternative model parameterizations at the end of
this section.
Figure 6 depicts the impulse response of the price dividend ratio to a 10

basis points (bp) increase of the quarterly real return expectations above its
rational expectations starting value (which lies at 78 bp per quarter).13 The
figure illustrates the strong momentum that is present in the model: following
the initial impulse, the PD ratio displays further increases for about 15 quarters.
The increase eventually stops and is followed by a much faster decline: the PD
ratio falls back to baseline in about 7 quarters, i.e., just about half the time it
took to increase. Due to the momentum that is present in returns and return
expectations around the RE value for beliefs, the PD ratio actually undershoots
its initial value and then slowly returns over time to its baseline value.
Figure 7 depicts the impulse response to a 10 bp drop in the return expec-

tations. It shows that the drop leads to a very quick fall in the PD ratio that
is followed by a very gradual return over time. The return to the baseline value
of the PD ratio is slow because for low values of mt actual returns (29) react
less strongly to changes in beliefs. This is so because the sensitivity of the first
fraction in (29), which is the dominant factor determining actual asset returns,

is highly non-linear. As
³
δ (mt)

1−γ
´ 1
γ

falls further below 1, changes in mt rel-

ative to mt−1 influence returns less than in the case where
³
δ (mt)

1−γ
´ 1
γ

is

closer to one. This asymmetry also explains why the overall fall in the PD ratio
following a drop in return expectations is less pronounced than the increase in
the PD ratio following an increase in return expectations: momentum is less

13Given a gain value of g = 0.014 such an increase would be triggered by the observation
of a quarterly real asset return that exceeds its average value by 7.14%. Given the variance
of asset returns in the data, this is not an unlikely event.
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pronounced when return expectations are low.
We now briefly discuss how these findings are affected by different model

parameterizations. Increasing the gain above the baseline value will increase the
size of the fluctuations. The PD ratio then starts to display very persistent low
frequency variation and is persistently oscillating between high and low values. If
the gain parameter becomes even larger, then the positive momentum in beliefs
becomes eventually so strong as to cause asset prices to increase without bound.
Lower gain values reduce the internal propagation of the model. Following an
increase in the return expectations, the PD ratio then increases less strongly and
reverts back to baseline more slowly, so that the asymmetry is now reversed:
the boom then occurs faster than the price bust. The asymmetry following a
negative return innovation, however, remains unchanged even for smaller gains.
Finally, reducing the intertemporal elasticity of substitution or the discount
factor both reduce the model’s sensitivity to return expectations and thereby
tend to dampen the internal propagation of shocks.

9 Matching the Empirical Behavior of the U.S.
PD Ratio

This section evaluates the ability of the learning model to replicate the low
frequency behavior of the PD ratio in the data. Since the longest historical
time series are available for the U.S., we restrict consideration to the behavior
of the U.S. price dividend ratio over the period 1926-2006.
The learning model is described by 3 parameters (δ, γ, g) and the initial

return beliefs m0. Given these values, the sequence of historical returns in the
data define a model implied path for the return beliefs mt according to equation
(30). Theses beliefs and the parameter values for δ and γ then define the model
implied PD ratio via equation (28). We compare this model implied PD ratio
with that observed in the data.
We parameterize the learning model as follows. For the gain we choose

g = 0.014, which is the same value as has been used in the simulations before.
We then set δ = 0.988 and γ = 0.72, which are chosen informally so as to help
matching the empirical behavior of the U.S. PD ratio in the data. The initial
value m0 is chosen so as to match the PD ratio in the data at the start of the
sample.
Figure 8 depicts the actual and the model implied quarterly PD ratio over

the period 1926:4-2006:1. The model predicted PD ratio replicates the behavior
of the PD ratio in the data surprisingly well. It matches all the low frequency
variation and also generates the asset price boom at the end of the century. The
largest discrepancy actually emerges at the end of the sample period where the
model predicts a much stronger fall in the PD ratio than can be observed in the
data.
Figure 9 depicts the model-implied return expectations over the period 1998-

2003. Comparing figure 9 with the survey expectations of US investors shown
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in figure 4 reveals a number of striking similarities. Prior to 2000 the model
predicts investors’ annual return expectations to be around 14 percent, similar
to what US investors actually seem to have expected. Moreover, after the year
2000 return expectations implied by the model significantly fall, as is the case
in the data. The drop in the data, however, appears to have been somewhat
more pronounced than that implied by the model.
Overall, we conclude that the learning model successfully replicates the low

frequency swings in the U.S. PD ratio over the period 1926-2006 and the be-
havior of return expectations around the turn of the century.

10 General Solution Approach
This section outlines how one can solve the model numerically in the general
stochastic case. Due to difficulties associated with Jensen’s inequality we were
not able to solve the model analytically in the case with non-vanishing risk.
The solution of the model is an asset demand function of the form (24)

solving the first order condition (8) under the perceived the state dynamics

St = S(St−1,
Pt
Dt

, lnmt) (31)

Pt+1
Dt+1

=
Rt+1Pt −Dt+1

Dt+1

=
Rt+1εt+1

βDεDt+1

Pt
Dt
− 1

=
Rtvt+1εt+1

βDεDt+1

Pt
Dt
− 1

=
mtηtvt+1εt+1

βDεDt+1

Pt
Dt
− 1 (32)

lnmt+1 = lnmt + g

µ
lnRt+1 +

σ2ε + σ2v
2

− lnmt

¶
= lnmt + g

µ
lnRt+1 + ln εt+1 +

σ2ε + σ2v
2

− lnmt

¶
= lnmt + g

µ
lnRt + ln νt+1 + ln εt+1 +

σ2ε + σ2v
2

− lnmt

¶
= lnmt + g

µ
lnmt + ln ηt + ln νt+1 + ln εt+1 +

σ2ε + σ2v
2

− lnmt

¶
= lnmt + g

µ
ln ηt + ln νt+1 + ln εt+1 +

σ2ε + σ2v
2

¶
(33)

where
ln ηt ∼ iiN(0, σ20)
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The noise term ηt captures the uncertainty associated with not knowing the
true value for βt. Due to the assumed independence between the prior beliefs
about β0 and εt and νt and due to the independence of εt and νt over time, ηt
is independent of εt+1 and νt+1.
Equation (31) says that agents expect tomorrow’s stockholdings to be equal

to their current demand. Equation (32) determines the future PD ratio. The
future PD ratio is thereby uncertain due to future unknown shocks and due
to uncertainties associated with the true value of Rt. Finally, equation (33)
specifies that beliefs about Rt follow a martingale process.
Standard projection methods allow to determine the asset demand function

(24) that solves the functional equation defined by the first order condition (8)
and the state transition laws (31)-(33).
The market equilibrium price is then implicitly determined by the market

clearing condition

1 = S(1,
Pt
Dt

, lnmt)

and the beliefs recursively evolve according to (21).

11 Conclusions
This paper constructs a simple asset pricing model in which low frequency boom
and bust cycles in asset prices emerge from learning and rational investment
behavior by agents that hold priors about return behavior that differ only in-
finitesimally from the rational expectations priors. Agents attempts to improve
their forecasts is shown to give rise to price movements that reinforce the initial
beliefs revision and thereby generate waves of optimism and pessimism that are
associated with large and persistent swings in asset prices. The model is able to
replicate the low frequency behavior of the US PD ratio and is consistent with
survey evidence on investors’ return expectations around the tech stock boom
period.

A Data Sources
Euro Area: We used the Datastream Global Equity Index “TOTMKEM”.
This index is a value-weighted average of the national equity indexes of the euro
area and is available on a quarterly basis from the first quarter of 1973. National
indices are value weighted averages of individual stocks, covering a minimum
of 75-80% of national market capitalisation. Datastream converts all numbers
into US Dollars using the daily exchange rate of the local currency vis-à-vis the
US Dollar. We reconverted the series into Euro using an exchange rate series
from Global Fin Data (Global Fin code “_EURO_D”), which is available from
1950 to 2007 on a daily basis. This series is constructed merging the European
Composite Unit from 1950 to August 1969, the EUA/ECU from September
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1969 to 31 December 1998 and the exchange rate of the Euro from January 1999
onwards. Our quarterly series for the exchange rate is simply the average of the
daily rates of a considered quarter. The corresponding dividend series has been
constructed using Datastream’s TOTMKEM dividend yield series (Datastream
“data type” DY). The resulting dividend series has been seasonally adjusted by
taking averages of dividend payments over the last 4 quarters.
United States: We used the series “TOTMKUS” from Datastream’s Global

Equity Index and the corresponding dividend yield series. As before, divi-
dends have been seasonally adjusted by taking averages over the last 4 quarters.
TOTMKUS is available on quarterly basis from the first quarter of 1973.
Japan: We used "TOTMKJP" from Datastream’s Global Equity Index

and the corresponding dividend yield series. Dividends have been seasonally
adjusted by taking averages over the last 4 quarters. TOTMKJP is available on
quarterly basis from the first quarter of 1973.

B PD Ratio under Rational Expectations
Market clearing requires St = 1 and Ct = Dt for all t. Provided

lim
j→∞

Et

"
δj
µ
Dt+j

Dt

¶−γ
Pt+j

#
= 0

for all ωt and t, the FOC (8) under RE implies

Pt = δEt

"µ
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Dt

¶−γ
(Pt+1 +Dt+1)

#

= Et

⎡⎣ ∞X
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⎤⎦
= Et

⎡⎣ ∞X
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´jYj
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³
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³
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as claimed in (11) and (12). Letting PDRE denote the PD ratio in the REE,
the REE stock returns are given by

lnRt = ln

µ
Pt+1 +Dt+1

Pt

¶
= ln

µ
PDRE + 1

PDRE

Dt+1

Dt

¶
= ln

µ
PDRE + 1

PDRE

¶
+ lnβD + ln εDt

= ln

Ã
βD

δβRE

!
+ ln εDt

= ln

⎛⎝ δ−1
³
βD
´γ

e−γ(1−γ)
σ2
D
2

⎞⎠+ ln εDt
C Proof of Proposition 1
Using the return definition (6) one has

EPt

h
(Pt+j +Dt+j)

1−γ
i
= EPt

h
(Rt+jPt+j−1)

1−γ
i

(34)

Moreover,

Pt+j−1 = Rt+j−1Pt+j−2 −Dt+j−1

≤ Rt+j−1Pt+j−2

so that
Rt+jPt+j−1 ≤ Pt

Yj

i=1
Rt+i (35)

Equations (34) and (35) then imply

EPt

h
(Pt+j +Dt+j)

1−γ
i

≤ (Pt)
1−γ EPt

"µYj

i=1
Rt+i

¶1−γ#

= (Pt)
1−γ

EPt

"µYj

i=1
Rt+iεt+i

¶1−γ#

= (Pt)
1−γ EPt

"µYj

i=1

µ
Rt

µYi

k=1
vt+k

¶
εt+i

¶¶1−γ#

= (Pt)
1−γ EPt

h¡
Rt

¢1−γiµYj

i=1

µµYi

k=1
EPt

h
(vt+k)
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i¶

EPt

h
(εt+i)

1−γ
i¶¶
(36)
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where the last line uses the fact that Rt, vt+k and εt+i are all mutually inde-
pendent.

EPt

h
(vt+k)

1−γ
i
= EPt

h
e(1−γ) ln vt+k

i
= e−(1−γ)

σ2v
2 +(1−γ)

2 σ
2
v
2

= e−γ(1−γ)
σ2v
2

≤ 1

Correspondingly

EPt

h
(εt+i)

1−γ
i
≤ 1

The previous two inequalities and equation (36) imply

EPt

h
(Pt+j +Dt+j)

1−γ
i
≤ (Pt)

1−γ EPt

h¡
Rt

¢1−γi
= (Pt)

1−γ
EPt

h
e(1−γ) lnRt

i
= (Pt)

1−γ EPt

h
e(1−γ)mt+(1−γ)σ20

i
so that

EP
t
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δj
(Pt+j +Dt+j)
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1− γ

⎤⎦ ≤ 1

1− γ

1

1− δ
(Pt)

1−γ EPt

h
e(1−γ)mt+(1−γ)σ20

i
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D Proof of Proposition 2
Consider the modified information structure described in section 6. The pos-
terior mean estimate of lnRt based on information up to period t − 1 is then
recursively given by

lnmt|t−1 = lnmt−1|t−2 + egµlnRt−1 +
σ2ε2
2
− lnmt−1|t−1

¶
(37)

with the posterior uncertainty and the Kalman gain given by

σ2t|t−1 = σ20|−1 =
−σ2ν +

q¡
σ2ν
¢2
+ 4σ2νσ

2
ε2

2

eg =
σ20|−1
σ2ε2

(38)

The posterior mean based on information up to t can then be expressed as

lnmt|t = lnmt|t−1+
σ2t|t−1

σ2t|t−1 + σ2ε1 + σ2ε2
(lnRt+

σ2ε1 + σ2ε2 + σ2v
2

−lnmt|t−1) (39)
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Now consider the limit σ2ε2 → 0 and along the limit choose σ2ε1 = σ2ε − σ2ε2
and σ2v =

g2

1−gσ
2
ε2. The latter implies that eg = g. From equation (38) then

follows that σ20|−1 → 0 and thus σ2t|t−1 → 0. Equation (39) then implies that
lnmt|t = lnmt|t−1 in the limit so that equation (37) can be written as stated
by equation (26) in the main text.

E Proof of Proposition 3
We consider the situation with vanishing noise (σ2D → 0,σ2ε → 0, σ2v → 0), so
that agents’ become increasingly certain about future outcomes. To simplify
notation we suppress the expectations operator and use EPt Xt+j = Xt+j so
that Xt+j now denotes the value that investors expect the variable X to take
on in period t+ j. The first order condition (7b) under vanishing noise can then
be written as

1 =

µ
Ct+1

Ct

¶−γ
δRt+1 ⇐⇒

Ct+1

Pt+1 +Dt+1
= δ

1
γ (Rt+1)

1−γ
γ

Ct

Pt
(40)

which holds for all t. The budget constraint implies

St−1(Pt +Dt) = Ct + StPt =⇒ St−1 =
Ct

Pt +Dt
+

Pt
Pt +Dt

St

Iterating forward on the latter equation gives

St−1 =
Ct

Pt +Dt
+

Pt
Pt +Dt

Ct+1

Pt+1 +Dt+1
+

Pt
Pt +Dt

Pt+1
Pt+1 +Dt+1

Ct+2

Pt+2 +Dt+2
+. . .
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Substituting out the fractions that involve future consumption by using repeat-
edly equation (40) gives

St−1 =
Ct

Pt +Dt
+

Pt
Pt +Dt

δ
1
γ (Rt+1)

1−γ
γ

Ct

Pt

+
Pt

Pt +Dt

Pt+1
Pt+1 +Dt+1

δ
1
γ (Rt+2)

1−γ
γ

Ct+1

Pt+1
+ . . .

=
Ct

Pt +Dt
+ δ

1
γ (Rt+1)

1−γ
γ

Ct

Pt +Dt

+
Pt

Pt +Dt
δ
1
γ (Rt+2)

1−γ
γ

Ct+1

Pt+1 +Dt+1
+ . . .

=
Ct

Pt +Dt
+ δ

1
γ (Rt+1)

1−γ
γ

Ct

Pt +Dt

+
Pt

Pt +Dt
δ
1
γ (Rt+2)

1−γ
γ δ

1
γ (Rt+1)

1−γ
γ

Ct

Pt
+ . . .

=
Ct

Pt +Dt
+ δ

1
γ (Rt+1)

1−γ
γ

Ct

Pt +Dt

+
³
δ
1
γ

´2
(Rt+1Rt+2)

1−γ
γ

Ct

Pt +Dt
+ . . .

=
Ct

Pt +Dt

∞X
j=0

µ³
δ
1
γ

´jYj

i=1
(Rt+i)

1−γ
γ

¶
(41)

which is the result stated in the proposition under the convention that Rt+i =
EP
t Rt+i.
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