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Abstract

Vector autoregressions (VARs) are flexible time series models that can capture
complex dynamic interrelationships among macroeconomic variables. However,
their dense parameterization leads to unstable inference and inaccurate out-of-
sample forecasts, particularly for models with many variables. A potential solution
to this problem is to use informative priors, in order to shrink the richly param-
eterized unrestricted model towards a parsimonious nave benchmark, and thus
reduce estimation uncertainty. This paper studies the optimal choice of the infor-
mativeness of these priors, which we treat as additional parameters, in the spirit
of hierarchical modeling. This approach is theoretically grounded, easy to imple-
ment, and greatly reduces the number and importance of subjective choices in the
setting of the prior. Moreover, it performs very well both in terms of out-of-sample
forecasting, and accuracy in the estimation of impulse response functions.

1 Introduction

In this paper, we study the choice of the informativeness of the prior distribution on
the coefficients of the following VAR model:

yt = C +B1yt−1 + ...+Bpyt−p + εt (1.1)

εt ∼ N (0,Σ) ,

where yt is an n× 1 vector of endogenous variables, εt is an n× 1 vector of exogenous
shocks, and C, B1,..., Bp and Σ are matrices of suitable dimensions containing the
model’s unknown parameters.

With flat priors and conditioning on the initial p observations, the posterior dis-

tribution of β ≡ vec
(

[C,B1, ..., Bp]
′
)

is centered at the Ordinary Least Square (OLS)

estimate of the coefficients and it is easy to compute. It is well known, however,
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Korobilis, Frank Schorfheide, Chris Sims and participants in several conferences and seminars for
comments and suggestions. The views expressed in this paper are those of the authors and do not
necessarily reflect those of the Eurosystem.
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that working with flat priors leads to inadmissible estimators (Stein, 1956) and yields
poor inference, particularly in large dimensional systems (see, for example, Sims, 1980;
Litterman, 1986; Bańbura, Giannone, and Reichlin, 2010; Koop and Korobilis, 2010).
One typical symptom of this problem is the fact that these models generate inaccurate
out-of-sample predictions, due to the large estimation uncertainty of the parameters.

To improve the forecasting performance of VAR models, the literature has proposed
to combine the likelihood function with some informative prior distributions. Using the
frequentist terminology, these priors are successful because they effectively reduce the
estimation error, while generating only relatively small biases in the estimates of the
parameters. To illustrate this point more formally from a Bayesian perspective, let’s
consider the following (conditional) prior distribution for the VAR coefficients

β|Σ ∼ N (b,Σ ⊗ Ωξ) ,

where b and Ω are given, and ξ is a scalar controlling the tightness of the prior infor-
mation. The conditional posterior of β can be obtained by multiplying this prior by
the likelihood function, and takes the form

β|Σ, y ∼ N
(

β̂ (ξ) , V̂ (ξ)
)

β̂ (ξ) ≡ vec
(

B̂ (ξ)
)

B̂ (ξ) ≡
(

x′x+ (Ωξ)−1
)−1 (

x′y + (Ωξ)−1 b
)

V̂ (ξ) ≡ Σ ⊗
(

x′x+ (Ωξ)−1
)−1

,

where y ≡ [yp+1, ..., yT ]′ is the (T − p) × n matrix of observed data up to time T ,
x ≡ [xp+1, ..., xT ]′ and xt ≡ [1, y′t−1, ..., y

′
t−p]

′. Notice that, if we choose a lower ξ,
the prior becomes more informative, the posterior mean of β comes closer to the prior
mean, and the posterior variance falls.

One natural way to assess the impact of different priors on the model’s ability to fit
the data is to evaluate their effect on the model’s out-of-sample forecasting performance,
summarized by the probability of observing low forecast errors. To this end, rewrite
(1.1) as

yt = Xtβ + εt,

where Xt ≡ In ⊗ x′t and In denotes an n × n identity matrix. The distribution of the
one-step-ahead forecast is then given by

yT+1|Σ, y ∼ N
(

XT β̂ (ξ) , XT V̂ (ξ)X ′

T + Σ
)

,

whose variance depends both on the posterior variance of the coefficients and the volatil-
ity of the innovations. It is then easy to see that neither very high nor very low values
of ξ are likely to be ideal. On the one hand, if ξ is too low and the prior very dogmatic,
density forecasts will be very concentrated around XT b. This results in a low proba-
bility of observing small forecast errors, unless the prior mean happens to be in a close
neighborhood of the likelihood peak (and there is no reason to believe that this is the
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case, in general). On the other hand, if ξ is too high and the prior too uninformative,
the model generates very dispersed density forecasts, especially in high-dimensional
VARs, because of high estimation uncertainty. This also lowers the probability of ob-
serving small forecast errors, despite the fact that the distance between yT+1 and Xtβ̂
might be small. In sum, neither flat nor dogmatic priors maximize the fit of the model,
which makes the choice of the informativeness of the prior distribution a crucial issue.

The literature has proposed a number of heuristic methodologies to set the infor-
mativeness of the prior distribution. In the context of VARs, for example, Litterman
(1980) and Doan, Litterman, and Sims (1984) set the tightness of the prior by maxi-
mizing the out-of-sample forecasting performance of the model. Bańbura, Giannone,
and Reichlin (2010) propose instead to control for over-fitting by choosing the shrinkage
parameters that yield a desired in-sample fit.1

From a purely Bayesian perspective, however, the choice of the informativeness of
the prior distribution is conceptually identical to the inference on any other unknown
parameter of the model. Suppose, for instance, that a model is described by a likelihood
function p (y|θ) and a prior distribution pγ (θ), where θ are the model’s parameters and γ
corresponds to the hyperparameters, i.e. those coefficients that parameterize the prior
distribution, but do not directly affect the likelihood.2 It is then natural to choose
these hyperparameters by interpreting the model as a hierarchical model, i.e. replacing
pγ (θ) with p (θ|γ), and evaluating their posterior (Berger, 1985; Koop, 2003). Such a
posterior can be obtained by applying Bayes’ law, which yields

p (γ|y) ∝ p (y|γ) · p (γ) ,

where p (γ) denotes the prior density on the hyperparameters—also known as the
hyperprior—while p (y|γ) is the so called marginal likelihood (ML), and corresponds to

p (y|γ) =

∫

p (y|θ, γ) p (θ|γ) dθ. (1.2)

In other words, the ML is the density of the data as a function of the hyperparame-
ters γ, obtained after integrating out the uncertainty about the model’s parameters θ.
Conveniently, in the case of VARs with conjugate priors, the ML is also available in
closed form.

Notice, also, that the hierarchical prior structure implies that the unconditional
prior for the parameters θ has a mixed distribution

p (θ) =

∫

p (θ|γ) p (γ) dγ.

Mixed distributions have generally fatter tails than each of the component distributions
p (θ|γ), a property that robustifies inference. In fact, when the prior has fatter tails

1A number of papers have subsequently followed either the first (e.g. Robertson and Tallman,
1999; Wright, 2009; Giannone, Lenza, Momferatou, and Onorante, 2010) or the second strategy (e.g.
Giannone, Lenza, and Reichlin, 2008; Bloor and Matheson, 2009; Carriero, Kapetanios, and Marcellino,
2009; Koop, 2011).

2The distinction between parameters and hyperparameters is mostly fictitious and made only for
convenience.
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than the likelihood, the posterior is less sensitive to extreme discrepancies between
prior and likelihood (Berger, 1985; Berger and Berliner, 1986).

Conducting formal inference on the hyperparameters is theoretically grounded and
has also several appealing interpretations. For example, with a flat hyperprior, the
shape of the posterior of the hyperparameters coincides with the ML, which is a measure
of out-of-sample forecasting performance of a model (see Geweke, 2001; Geweke and
Whiteman, 2006). More specifically, the ML corresponds to the probability density
that the model generates zero forecast errors, which can be seen by rewriting the ML
as a product of conditional densities:

p (y|γ) = p (y1|γ) ·
T∏

t=2

p
(

yt|y
t−1, γ

)

.

As a consequence, maximizing the posterior of the hyperparameters corresponds to
maximizing the one-step-ahead out-of-sample forecasting ability of the model.

Moreover, the strategy of estimating hyperparameters by maximizing the ML (i.e.
their posterior under a flat hyperprior) is an Empirical Bayes method (Robbins, 1956),
which has a clear frequentist interpretation. On the other hand, the full posterior
evaluation of the hyperparameters (as advocated, for example, by Lopes, Moreira, and
Schmidt, 1999, for VARs) can be thought of as conducting Bayesian inference on the
population parameters of a random effects model or, more generally, of a hierarchical
model (see, for instance, Gelman, Carlin, Stern, and Rubin, 2004).

In this paper, we adopt this hierarchical modeling approach to make inference
about the informativeness of the prior distribution of Bayesian Vector Autoregressions
(BVARs) estimated on postwar U.S. macroeconomic data. We consider a combination
of the conjugate priors most commonly used in the literature (the “Minnesota,” “sum
of coefficients” and “dummy initial observation” priors), and document that this es-
timation strategy generates very accurate out-of-sample predictions, both in terms of
point and density forecasts. The key to success lies in the fact that this procedure au-
tomatically selects the “appropriate” amount of shrinkage, namely tighter priors when
the model involves many unknown coefficients relative to the available data, and looser
priors in the opposite case. Because of this feature, the hierarchical BVAR improves
over naive benchmarks and flat-prior VARs, even for small-scale models, for which
the optimal shrinkage is low, but not zero. In addition, we find that the forecasting
performance of the model normally improves as we include more variables, and it is
comparable to factor models, which are among the most successful methods to deal
with large sets of predictors.

Our second contribution is documenting that this hierarchical BVAR approach per-
forms very well also in terms of accuracy of the estimation of impulse response functions
in identified VARs. We conduct two experiments to make this point. First, we study
the transmission of an exogenous increase in the federal funds rate in a large-scale
model with 22 variables. The estimates of the impulse responses that we obtain are
broadly in line with the usual narrative of the effects of an exogenous tightening in
monetary policy. This finding, together with the result that the same large-scale model
produces good forecasts, indicates that our approach is able to effectively deal with the
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curse of dimensionality. However, in this empirical exercise there is no way of formally
checking the accuracy of the estimated impulse response functions, since we do not have
a directly observable counterpart of these objects in the data. Therefore, we conduct
a second exercise, which is a controlled Monte Carlo experiment. Namely, we simu-
late data from a micro-founded, medium-scale, dynamic stochastic general equilibrium
model estimated on U.S. postwar data. We then use the simulated data to estimate
our hierarchical BVAR, and compare the implied impulse responses to monetary pol-
icy shocks to those of the true data generating process. This experiment lends strong
support to our model. The surprising finding is in fact that the hierarchical Bayesian
procedure generates very little bias, while drastically increasing the efficiency of the
impulse response estimates relative to standard flat-prior VARs.

Hierarchical modeling (or Empirical Bayes, i.e. its frequentist version) has been suc-
cessfully adopted in many fields (see Berger, 1985; Gelman, Carlin, Stern, and Rubin,
2004, for an overview). It has also been advocated by the first proponents of BVARs
(Doan, Litterman, and Sims, 1984; Sims and Zha, 1998; Canova, 2007) but seldom
formally implemented in this context.3 Exceptions to this statement include Del Negro
and Schorfheide (2004) and Del Negro, Schorfheide, Smets, and Wouters (2007), who
use the ML to choose the tightness of a prior for VARs derived from the posterior
density of a dynamic stochastic general equilibrium model. Relative to these authors,
our focus is on BVARs with standard conjugate priors, for which the posterior of the
hyperparameters is available in closed form. Phillips (1995) chooses the hyperparame-
ters of the Minnesota prior using the asymptotic posterior odds criterion of Phillips and
Ploberger (1994), which is also related to the ML. More recently, Carriero, Kapetanios,
and Marcellino (2010) and Carriero, Clark, and Marcellino (2011) have used the ML to
set the variance of a (variant of the) Minnesota prior for VARs. They show that such
a strategy is successful in forecasting bond yields and macroeconomic variables.

We generalize this approach to the optimal selection of a variety of commonly
adopted prior distributions for BVARs. This includes the prior on the sum of coefficients
proposed by Doan, Litterman, and Sims (1984), which turns out to be crucial to enhance
the forecasting performance of the model. Moreover, relative to these studies, we take
an explicit hierarchical modeling approach that allows us to take the uncertainty about
hyperparameters into account, and to evaluate the density forecasts of the model. More
important, we also complement the model’s forecasting evaluation with an assessment
of the performance of hierarchical BVARs for impulse response estimation, which is
new in the literature. Finally, we document that our approach works well for models
of very different scale, including 3-variable VARs and much larger-scale ones. In this
respect, our work relates to the growing literature on forecasting using factors extracted
from large information sets (see, for example Forni, Hallin, Lippi, and Reichlin, 2000;
Stock and Watson, 2002b), Large Bayesian VARs (Bańbura, Giannone, and Reichlin,
2010) and empirical Bayes regressions with large sets of predictors (Knox, Stock, and
Watson, 2000).

The rest of the paper is organized as follows. Section 2 and 3 provide some addi-

3In the context of time varying VARs, hierarchical modeling has been used by Primiceri (2005) and
Belmonte, Koop, and Korobilis (2011) to choose the informativeness of the prior distribution for the
time variation of coefficients and volatilities.
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tional details about the computation and interpretation of the ML, and the priors and
hyperpriors used in our investigation. Section 4 and 5 focus instead on the empirical
application to macroeconomic forecasting and impulse response estimation. Section 6
concludes.

2 The Choice of Hyperparameters for BVARs

In the previous section, we have argued that the most natural way of choosing the
hyperparameters of a model is based on their posterior distribution. This posterior is
proportional to the product of the hyperprior and the ML. The hyperprior is a “level-
two” prior on the hyperparameters, while the ML is the likelihood of the observed
data as a function of the hyperparameters, which we can obtain by integrating out
the model’s coefficients, as in equation (1.2). Although this procedure can be applied
very generally, in this paper we restrict our attention to prior distributions for VAR
coefficients belonging to the following Normal-Inverse-Wishart family:

Σ ∼ IW (Ψ; d) (2.3)

β|Σ ∼ N (b,Σ ⊗ Ω) , (2.4)

where the elements Ψ, d, b and Ω are typically functions of a lower dimensional vector
of hyperparameters γ.

We focus on these priors for two reasons. First of all, this class includes the priors
most commonly used by the existing literature on BVARs.4 Second, the prior (2.3)-
(2.4) is conjugate and has the advantage that the ML can be computed in closed form
as a function of γ. In appendix A we show that the posterior of the parameters has
the following Normal-Inverse-Wishart distribution:

Σ|y ∼ IW

(

Ψ + ε̂′ε̂+
(

B̂ − b̂
)′

Ω−1
(

B̂ − b̂
)

, T − p+ d

)

(2.5)

β|Σ, y ∼ N

(

β̂,Σ ⊗
(

x′x+ Ω−1
)−1

)

, (2.6)

and that the ML is given by the following expression:

p (y|γ) =

(
1

π

)n(T−p)
2 Γn

(
T−p+d

2

)

Γn
(
d
2

) ·

|Ω|−
n
2 · |Ψ|

d
2 ·

∣
∣
∣x′x+ Ω−1

∣
∣
∣

−
n
2 ·

∣
∣
∣
∣Ψ + ε̂′ε̂+

(

B̂ − b̂
)′

Ω−1
(

B̂ − b̂
)
∣
∣
∣
∣

−
T−p+d

2

, (2.7)

where Γn (·) is the n-variate Gamma function, ε̂ is the (T − p) × n matrix of the VAR
residuals computed at the posterior mode of the VAR parameters, b̂ is an (1 + np)× n

4Some recent studies have proposed alternative priors for VAR that do not belong to this family.
See, for example, Del Negro and Schorfheide (2004), Villani (2009) and Jarociski and Marcet (2010).
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matrix obtained by reshaping the vector b in such a way that each column corresponds
to the prior mean of the coefficients of each equation, and B̂ is an (1 + np)× n matrix
obtained by reshaping the posterior mode of the VAR coefficients in such a way that
each column corresponds to the posterior mode of the coefficients of each equation.
Notice that (2.7) is a function of γ because in principle Ψ, d, b, Ω, ε̂ and B̂ all depend
on γ.5

Apart from a constant term, the logarithm of the ML can be written as the sum of
two components. The first component is the difference between the log-determinant of
the prior and posterior mode (or mean) of the residual covariance matrix, weighted by
their respective degrees of freedom. The second part consists of the difference between
the log-determinant of the prior and posterior variance of the model’s coefficients.
On the one hand, less informative priors improve the ML to the extent that they
increase the in-sample fit of the model and reduce the posterior mode of the residual
covariance matrix. On the other hand, weaker prior information typically induces a
greater discrepancy between the prior and posterior variance of the coefficients, which
penalizes the ML.

Clearly, the fact that the ML is available in closed form simplifies inference sub-
stantially. Given (2.7), it is in fact easy to either maximize or simulate the posterior
of the hyperparameters. As we have pointed out in the introduction, the advantage
of the approach based on the maximization is that, under a flat hyperprior, it is an
Empirical Bayes procedure and has a classical interpretation. In addition, it coincides
with selecting hyperparameters that maximize the one-step-ahead out-of-sample fore-
casting performance of the model. On the other hand, the full posterior simulation
allows to account for the estimation uncertainty of the hyperparameters, and has an
interpretation of Bayesian hierarchical modeling. This approach can be implemented
using a simple Markov chain Monte Carlo algorithm. In particular, we use a Metropolis
step to draw the low dimensional vector of hyperparameters. Conditional on a value of
γ, the VAR coefficients [β,Σ] can then be drawn from their posterior, which is Normal-
Inverse-Wishart and given by (6.10)-(6.11). Appendix B presents the details of this
procedure.

We now turn to the description of the specific priors that we employ in our empirical
analysis.

3 Priors and Hyperpriors

As mentioned in the previous section, we focus on priors of the form (2.3)-(2.4). As
in Kadiyala and Karlsson (1997), we set the degrees of freedom of the Inverse-Wishart
distribution to d = n + 2, which is the minimum value that guarantees the existence
of the prior mean of Σ (it is equal to Ψ/(d − n − 1)). In addition, we take Ψ to be
a diagonal matrix with an n × 1 vector ψ on the main diagonal. We treat ψ as an

5It is common in the literature to implement some of these conjugate priors using dummy observa-
tions. In this case, abusing notation, the ML would be given by p (y|γ) = p

(
y+|γ

)
− p (y∗|γ), where

p (·|·) is the function in (2.7), y∗ denote the artificial data, and y+ is the extended set of data, i.e.
[y, y∗].
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hyperparameter, which differs from the existing literature that has been fixing this
parameter using sample information.

As for the conditional Gaussian prior for β, we combine the three most popular
prior densities used by the existing literature for the estimation of BVARs in levels:

1. The baseline prior is a version of the so-called Minnesota prior, first introduced
in Litterman (1979, 1980). This prior is centered on the assumption that each
variable follows a random walk process, possibly with drift, which is a parsi-
monious yet “reasonable approximation of the behavior of an economic vari-
able”(Litterman, 1979, p. 20). More precisely, this prior is characterized by
the following first and second moments:

E
[

(Bs)ij |Σ
]

=

{

1 if i = j and s = 1
0 otherwise

cov
(

(Bs)ij , (Br)hm |Σ
)

=

{

λ2 1
s2

Σih

ψj/(d−n−1) if m = j and r = s

0 otherwise
,

and can be easily cast into the form of (2.4). Notice that the variance of this prior
is lower for the coefficients associated with more distant lags, and that coefficients
associated with the same variable and lag in different equations are allowed to be
correlated. Finally, the key hyperparameter is λ, which controls the scale of all
the variances and covariances, and effectively determines the overall tightness of
this prior.

The literature following Litterman’s work has introduced refinements of the Minnesota
prior to further “favor unit roots and cointegration, which fits the beliefs reflected
in the practices of many applied macroeconomists” (Sims and Zha, 1998, p. 958).
Loosely speaking, the objective of these additional priors is to reduce the impor-
tance of the deterministic component implied by VARs estimated conditioning on
the initial observations (Sims, 1992a). This deterministic component is defined as

τt ≡ Ep
(

yt|y1, ..., yp, β̂
)

, i.e. the expectation of future y’s given the initial conditions

and the value of the estimated VAR coefficients. According to Sims (1992a), in un-
restricted VARs, τt has a tendency to exhibit temporal heterogeneity—a markedly
different behavior at the beginning and the end of the sample—and to explain an im-
plausibly high share of the variation of the variables over the sample. As a consequence,
priors limiting the explanatory power of this deterministic component have been shown
to improve the forecasting performance of BVARs.

2. The first prior of this type is known as “sum-of-coefficients” prior and was orig-
inally proposed by Doan, Litterman, and Sims (1984). Following the litera-
ture, it is implemented using Theil mixed estimation, with a set of n artificial
observations—one for each variable—stating that a no-change forecast is a good
forecast at the beginning of the sample. More precisely, we construct the following
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set of dummy observations:

y+

n×n
= diag

(
ȳ0

µ

)

x+

n×(1+np)
=

[

0
n×1

, y+, ..., y+
]

,

where ȳ0 is an n× 1 vector containing the average of the first p observations for
each variable, and the expression diag(v) denotes the diagonal matrix with the
vector v on the main diagonal. These artificial observations are added on top of
the data matrices y ≡ [yp+1, ..., yT ]′ and x ≡ [xp+1, ..., xT ]′, which are then used
for inference. The prior implied by these dummy observations is centered at 1
for the sum of coefficients on own lags for each variable, and at 0 for the sum
of coefficients on other variables’ lags. It also introduces correlation among the
coefficients on each variable in each equation. The hyperparameter µ controls
the variance of these prior beliefs: as µ → ∞ the prior becomes uninformative,
while µ → 0 implies the presence of a unit root in each equation and rules out
cointegration.

3. The fact that, in the limit, the sum-of-coefficients prior is not consistent with
cointegration motivates the use of an additional prior that was introduced by
Sims (1993), known as “dummy-initial-observation” prior. It is implemented
using the following dummy observation

y++

1×n
=

ȳ′0
δ

x++

1×(1+np)
=

[
1

δ
, y++, ..., y++

]

,

which states that a no-change forecast for all variables is a good forecast at the
beginning of the sample. The hyperparameter δ controls the tightness of the prior
implied by this artificial observation. As δ → ∞ the prior becomes uninformative.
On the other hand, as δ → 0, all the variables of the VAR are forced to be at
their unconditional mean, or the system is characterized by the presence of an
unspecified number of unit roots without drift. As such, the dummy-initial-
observation prior is consistent with cointegration.

Summing up, the setting of these priors depends on the hyperparameters λ, µ, δ and
ψ, which we treat as additional parameters. As hyperpriors for λ, µ and δ, we choose
Gamma densities with mode equal to 0.2, 1 and 1—the values recommended by Sims
and Zha (1998)—and standard deviations equal to 0.4, 1 and 1 respectively. Finally, our
prior on ψ/ (d− n− 1), i.e. the prior mean of the main diagonal of Σ, is an Inverse-
Gamma with scale and shape equal to (0.02)2. This prior peaks at approximately
(0.02)2, is proper, but quite disperse since it does not have neither a variance nor a
mean. We work with proper hyperpriors because they guarantee the properness of
the posterior and, from a frequentist perspective, the admissibility of the estimator of
the hyperparameters, which is a difficult property to check for the case of hierarchical
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models (see Berger, Strawderman, and Dejung, 2005). However, our hyperpriors are
relatively diffuse, and our empirical results are confirmed when using completely flat,
improper hyperpriors.

4 Forecasting Evaluation of BVAR Models

The assessment of the forecasting performance of econometric models has become stan-
dard in macroeconomics, even when the main objective of the study is not to provide
accurate out-of-sample predictions. This is because the forecasting evaluation can be
thought of as a model validation procedure. In fact, if model complexity is intro-
duced with a proliferation of parameters, instabilities due to estimation uncertainty
might completely offset the gains obtained by limiting model mis-specification. Out-
of-sample forecasting reflects both parameter uncertainty and model mis-specification
and reveals whether the benefits due to flexibility are outweighed by the fact that the
more general model captures also non-prominent features of the data.

Our out-of-sample evaluation is based on the US dataset constructed by Stock and
Watson (2008). We work with three different VAR models, including progressively
larger sets of variables:6

1. A SMALL-scale model—the prototypical monetary VAR—with three variables,
i.e. GDP, the GDP deflator and the federal funds rate.

2. A MEDIUM -scale model, which includes the variables used for the estimation
of the DSGE model of Smets and Wouters (2007) for the US economy. In other
words, we add consumption, investment, hours worked and wages to the small
model.

3. A LARGE -scale model, with 22 variables, using a dataset that nests the previ-
ous two specifications and also includes a number of important additional labor
market, financial and monetary variables.

Further details on the database are reported in Table 1.

INSERT TABLE 1 HERE

The variables enter the models in annualized log-levels (i.e. we take logs and multi-
ply by 400), except those already defined in terms of annualized rates, such as interest
rates, which are taken in levels. The number of lags in all the VARs is set to five.

Using each of these three datasets, we produce the BVAR forecasts recursively for
two horizons (1 and 4 quarters), starting with the estimation sample that ranges from
1959Q1 to 1974Q4. More precisely, using data from 1959Q1 to 1974Q4, we gener-
ate draws from the posterior predictive density of the model for 1975Q1 (one quarter
ahead) and 1975Q4 (one year ahead). We then iterate the same procedure updating

6The complete database in Stock and Watson (2008) includes 149 quarterly variables from 1959Q1
to 2008Q4. Since several variables are monthly, we follow Stock and Watson (2008) and transform
them into quarterly by taking averages.
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the estimation sample, one quarter at a time, until the end of the sample, i.e. 2008Q4.
At each iteration, of course, we also re-estimate the posterior distribution of the hyper-
parameters. The outcome of this procedure is a time-series of 137 density forecasts for
each of the two forecast horizons.

We start by assessing the accuracy of our models in terms of point forecasts, defined
as the median of the predictive density at each point in time. We then turn to the
evaluation of the density forecasts to assess how accurately different models capture
the uncertainty around the point forecasts.

For each variable, the target of our evaluation is defined in terms of the h-period
annualized average growth rates, i.e. zhi,t+h = 1

h [yi,t+h − yi,t]. For variables specified
in log-levels, this is approximately the average annualized growth rate over the next h
quarters, while for variables not transformed in logs this is the average quarterly change
over the next h quarters.

We compare the forecasting performance of the BVAR to a VAR with flat prior,
estimated by OLS (we will refer to this model as VAR or flat-prior VAR) and a ran-
dom walk with drift, which is the model implied by a dogmatic Minnesota prior (we
will refer to this model as RW). We also compare the point forecasts of the BVAR
to those of a single equation model, augmented with factors extracted from a large
dataset using principal components.7 Factor models offer a parsimonious representa-
tion for macroeconomic variables while retaining the salient features of the data that
notoriously strongly comove. Hence, factor augmented regressions are widely used in
order to deal with the curse of dimensionality, since a large set of potential predictors
can be replaced in the regressions by a much smaller number of factors. Factor based
approaches are a benchmark in the literature and have been shown to produce very
accurate forecasts exploiting large cross-sections of data. Specifically we focus on the
factor based forecasting approach of Stock and Watson (2002a,b), whose implementa-
tion details are reported in appendix C.

4.1 Point forecasts

Table 1 analyzes the accuracy of point forecasts by reporting the mean squared forecast
errors (MSFE) of real GDP, the GDP deflator and the federal funds rate.

INSERT TABLE 2 HERE

Comparing models of different size, notice that it is not possible to estimate the
large-scale VAR with a flat prior. In addition, the VAR forecasts worsen substantially
when moving from the small to the medium-scale model. This outcome indicates that
the gains from exploiting larger information sets are completely offset by an increase
in estimation error. On the contrary, the forecast accuracy of the BVARs does not
deteriorate when increasing the scale of the model, and sometimes even improves sub-
stantially (as it is the case for inflation). In this sense, the use of priors seems to be
able to turn the curse into a blessing of dimensionality. Moreover, BVAR forecasts are

7The principal components are extracted from the whole set of 149 variables described in Stock and
Watson (2008).
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systematically more accurate than the flat-prior VAR forecasts, for all the variables
and horizons that we consider.

The comparison with the RW model is also favorable to the BVARs, with the
possible exception of the forecasts of the federal funds rate at one-year horizon. The
improvement of BVARs over the prior model indicates that our inference-based choice
of the hyperparameters leads to the use of informative priors, but not excessively so,
letting the data shape the posterior beliefs about the model’s coefficients. Finally,
notice that the performance of the prior model is particularly poor for inflation. In
fact Atkeson and Ohanian (2001) show that a random walk for the growth rate of the
GDP deflator is a more appropriate naive benchmark model. Specifically, they propose
to forecast inflation over the subsequent year using the inflation rate over the past
year. The MSFE of this alternative simple model for inflation at a 4-quarter horizon
is 1.24, which is smaller than that obtained with the random walk in levels or with the
small and medium BVARs, but higher than the corresponding MSFE of the large-scale
BVAR.

Table 2 also suggests that the BVAR predictions are competitive with those of the
factor model. This outcome is in line with the findings of De Mol, Giannone, and
Reichlin (2008) and indicates that factor augmented and Bayesian regressions capture
the same features of the data. In fact, De Mol, Giannone, and Reichlin (2008) have
shown that Bayesian shrinkage and regressions augmented with principal components
are strictly connected.

Overall, the results presented in table 2 are in line with the conclusion of existing
studies that highlight the accuracy of BVAR forecasts (Doan, Litterman, and Sims,
1984; Sims and Zha, 1998; Robertson and Tallman, 2001; Bańbura, Giannone, and
Reichlin, 2010; Koop, 2011), although these authors select the tightness of the prior
information using heuristic procedures. This suggests that BVARs improve forecast ac-
curacy over models with flat priors across a relatively wide range of parameter settings.
However, “the degree of forecast accuracy improvement for a given data set is depen-
dent on the choice of hyperparameter values” (Robertson and Tallman, 2001, p.14),
an issue that gives support to our inference-based procedure for choosing the hyperpa-
rameters. Another advantage of our methodology relative to more ad hoc procedures
is that it can be used with different sets of data, without requiring human judgement
in the search for reasonable ranges of hyperparameters.

4.2 Density forecasts

The point forecast evaluation of the previous subsection is a useful tool to discriminate
among models, but disregards the uncertainty assigned by each model to its point
prediction. For this reason, we now turn to the evaluation of density forecasts. We
measure the accuracy of a density forecast using the log-predictive score, which is simply
the logarithm of the predictive density generated by a model, evaluated at the realized
value of the time series. Therefore, if model A has a higher average log predictive score
than model B, it means that values close to the actual realizations of a time series were
a priori more likely according to model A relative to model B.

Table 3 reports the average difference between the log predictive scores of the
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BVARs and the competing models (the flat-prior VAR and RW models), for each
variable and horizon. A positive number indicates that the density forecasts produced
by our proposed procedure are superior to those of the alternative models. In addition,
the HAC estimate of its standard deviation (in parentheses) gives a rough idea of the
statistical significance and the volatility of this difference.8

INSERT TABLE 3 HERE

Table 3 makes clear that the BVAR forecasts are more accurate than those of the
RW and flat-prior VAR also when evaluating the whole density.

4.3 Inspecting the mechanism

In this subsection, we provide some intuition about why the hierarchical procedure
described in the previous sections generates accurate forecasts. As we have discussed at
length in the introduction, VAR models require the estimation of many free parameters,
which, when using a flat prior, leads to high estimation uncertainty and overfitting. It
is therefore beneficial to shrink the model parameters towards a parsimoneous prior
model. The key to success of the hierarchical BVAR is that it automatically infers the
“appropriate” amount of shrinkage, by selecting the tightness of the prior distribution.
For example, the procedure will select looser priors for models with fewer parameters,
and tighter priors for models with many parameters relative to the available data.

To illustrate this point, consider a much simplified version of our model, i.e a BVAR
with only a Minnesota prior, and the prior mean of the diagonal elements of Σ set
equal to the variance of the residuals of an AR(1) for each variables (as in Kadiyala
and Karlsson, 1997). This model is convenient because it involves only one hyper-
parameter, namely the hyperparameter λ governing the overall standard deviation of
the Minnesotra prior. For each dataset—small, medium and large—we estimate our
hierarchical BVAR on the full sample, and compute the posterior distribution of the
hyperparameter λ. These posteriors are plotted in figure 1, along with the hyperprior.
Notice that, in line with intuition, the posterior mode (and variance) of λ decreases with
the size of the model. In other words, the larger the size of the BVAR, the more likely
it is that we should shrink the model toward the parsimonious specification implied by
the Minnesota prior.

INSERT FIGURE 1 HERE

5 Structural BVARs and estimation of impulse response

functions

The forecast accuracy of the hierarchical modeling procedure proposed in this paper
is quite remarkable, and in line with the interpretation of the marginal likelihood as a

8Notice that the associated t-statistics corresponds to the statistics of Amisano and Giacomini (2007)
with standard Normal distribution when the models are estimated using a rolling scheme. This is not
the case in our exercise since we use a recursive estimation procedure.
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measure of out-of-sample forecasting performance. However, VARs are not used in the
literature only for forecasting, but also as a tool to identify structural shocks and assess
their transmission mechanism. Inspired by an important insight of statistical decision
theory—the separation between loss functions and probability models—we now present
evidence that the same hierarchical modeling strategy also delivers accurate estimates
of the impulse response functions to structural shocks.

More specifically, in this section we perform two exercises. First, we estimate the
impulse responses to monetary policy shocks using our large-scale BVAR with 22 vari-
ables. The analysis of the effects of monetary policy innovations is widespread in the
literature because, among other things, it allows to discriminate between competing
theoretical models of the economy (Christiano, Eichenbaum, and Evans, 1999). The
purpose of this first exercise is to demonstrate that our hierarchical procedure allows
us to obtain plausible estimates of impulse response functions even when working with
large-scale models, which is not the case for flat-prior VARs. However, we do not have
an observable counterpart of these impulse responses in the data that can be used to
directly check their accuracy. This motivates our second exercise, which is a controlled
Monte Carlo experiment. In a nutshell, we simulate artificial datasets from a dynamic
stochastic general equilibrium (DSGE) model, and assess the gains in accuracy for the
estimation of impulse responses to monetary policy shocks of our hierarchical procedure
over flat-prior VARs.

Concerning our first exercise, the monetary policy shock is identified using a rela-
tively standard recursive identification scheme, assuming that prices and real activity
do not react contemporaneously to the monetary policy shock. The only variables
that can react contemporaneously to monetary policy shocks are the financial variables
(bond rates and stock prices), the exchange rate and M2, while the policy rate does
not react contemporaneously to financial variables (see Christiano, Eichenbaum, and
Evans, 1999). Figures 2, 3 and 4 report the median and the 16th and 84th percentiles
of the posterior distribution of the impulse responses to a monetary policy shock esti-
mated in the large-scale model, using the full sample. The distribution of the impulse
responses encompasses both uncertainty on the parameters and hyperparameters.

INSERT FIGURES FROM 2 TO 4 HERE

A one-standard-deviation (approximately 60 basis points) exogenous increase in the
federal funds rate generates a substantial contraction in GDP, employment and all other
variables related to economic activity. Monetary aggregates also decrease on impact,
indicating strong liquidity effects. Moreover, stock prices decline, the exchange rate
appreciates and the yield curve flattens. Prices decrease with a delay. Notice that,
with the exception of the CPI, the response of prices does not exhibit the so called
price puzzle, i.e. a counterintuitive positive response to a monetary contraction, which
is instead typical of VARs with small information sets (Sims, 1992b; Bernanke, Boivin,
and Eliasz, 2005; Bańbura, Giannone, and Reichlin, 2010). These responses are all in
line with intuition, and hence lend support to our hierarchical procedure. On the other
hand, there is no formal way to assess the accuracy of this estimation, since there is
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no counterpart of these responses directly observable in the data. This is why we now
turn to our second exercise.

In our controlled Monte Carlo experiment, we adopt a medium-scale DSGE model
to simulate 500 artificial time series of length of 200 quarters, for the following seven
macro variables: output (Y), consumption (C), investment (I), hours worked (H), wages
(W), prices (P) and the short-term interest rate (R). For each dataset, we estimate the
impulse responses to a monetary policy shock with our hierarchical BVAR model and
a flat-prior VAR, and compare these estimates to the true impulse responses of the
theoretical model.

The DSGE that we use to simulate the data is identical to Justiniano, Primiceri,
and Tambalotti (2010), with the exception that the behavior of the private sector is pre-
determined with respect to the monetary policy shock, as in Christiano, Eichenbaum,
and Evans (2005). This justifies the use of a recursive scheme for the identification of
monetary policy shocks in the BVAR and the VAR. Finally, the DSGE is parameter-
ized using the posterior mode of the unknown coefficients, estimated using U.S. data on
output growth, consumption growth, investment growth, hours, wage inflation, price
inflation and the federal funds rate, as in Justiniano, Primiceri, and Tambalotti (2010).
This is a good laboratory to study the question at hand, since it is well known that
this class of medium-scale DSGE models fits the data quite well (Smets and Wouters,
2007).

Figure 5 reports the theoretical DSGE impulse responses to a monetary policy
shock (solid line), and the average across replications of the median responses using
our hierarchical procedure (dashed line) and the flat-prior VAR (dotted line). Both the
BVAR and the VAR responses replicate the shape of the true impulse responses quite
well. In general, the bias introduced by using an informative prior is not substantially
larger than the small sample bias of the flat-prior VAR.9

INSERT FIGURE 5 HERE

However, the difference between the average median across replications and the
theoretical impulse response, the bias, represents only one dimension of accuracy. In
order to take into account also the standard deviation of the errors across replications,
we need to look at the average squared error across replications.

More in details, for each replication, we compute the overall error as the difference
between the theoretical response and the estimated median response across variables
and horizons. Then, for each variable and horizon, we take the average of the squared
errors across replications (MSE). Figure 6 reports the ratio between the MSE for the
flat-prior VAR and the hierarchical BVAR.

INSERT FIGURE 6 HERE

Such a ratio is greater than one for most variables and horizons, indicating that the
hierarchical BVAR yields very substantial accuracy gains. For instance, depending on

9We have also computed the impulse responses to a monetary policy shock in the theoretical VAR(5)
representation of the DSGE model. These responses are extremely similar to the DSGE responses.

15



the horizon, the impulse responses of output, consumption, investment, hours and wages
based on the BVAR can be about twice as accurate. An important exception is the
response of the federal funds rate, which is estimated to be too persistent and to decay
too slowly when using informative priors (see figures 5 and 6). Further experimentation
reveals that this excessively persistent behavior is due to the sum-of-coefficients prior.
While this prior is very important to enhance the forecasting performance of the model,
the outcomes in figures 5 and 6 suggest that more sophisticated priors might be needed
to discipline the behavior of the model at low frequencies. It is also reasonable to expect
that these more sophisticated priors should be based on insights coming from economic
theory, since it is well known that the data are less informative about low frequency
trends.

6 Conclusion

In this paper, we have studied the problem of how to choose the informativeness of a
prior distribution for VAR models. Our approach consists of treating the coefficients
of the prior as additional parameters, in the spirit of hierarchical modeling. We have
shown that this approach is theoretically grounded, easy to implement, and performs
very well both in terms of out-of-sample forecasting, and accuracy in the estimation of
impulse response functions. Moreover, it greatly reduces the number and importance of
subjective choices in the setting of the prior. In sum, this hierarchical modeling proce-
dure is beneficial for both reduced-form and structural analysis with VARs. Moreover,
this approach may prove particularly useful also for the increasingly large literature on
DSGE models. It is in fact typical in this literature to validate a theoretical model by
comparing its fit and impulse responses to those of VARs.
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Appendix A: The Marginal Likelihood for a BVAR with a

Conjugate Prior

This appendix derives the functional form of the ML for a BVAR with a conjugate
prior. Consider the VAR model of section 1

yt = C +B1yt−1 + ...+Bpyt−p + εt, t = 1, ..., T

εt ∼ N (0,Σ) ,

and rewrite it as

Y = Xβ + ǫ

ǫ ∼ N (0,Σ ⊗ IT−p) ,

where y ≡ [yp+1, ..., yT ]′, Y ≡ vec (y), xt ≡ [1, y′t−1, ..., y
′
t−p]

′, x ≡ [xp+1, ..., xT ]′, X ≡

In ⊗ x, ε ≡ [εp+1, ..., εT ]′, ǫ ≡ vec (ε), B ≡ [C,B1, ..., Bp]
′ and β ≡ vec(B). Finally,

define the number of regressors for each equation by k ≡ np+ 1.
As in section 2, the prior on (β,Σ) is given by the following Normal-Inverse-Wishart

distribution10

Σ ∼ IW (Ψ, d)

β|Σ ∼ N (b,Σ ⊗ Ω) ,

where, for simplicity, we are not explicitly conditioning on the hyperparameters b, Ω,
Ψ and d.

The un-normalized posterior of (β,Σ) can be obtained by multiplying the prior
density by the likelihood function

p (β,Σ|Y ) =

(
1

2π

)n(T−p+k)
2
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) ·
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−
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2

[

(Y −Xβ)′ (Σ ⊗ IT )−1 (Y −Xβ) +

+ (β − b)′ (Σ ⊗ Ω)−1 (β − b)

]

. (6.8)

Tedious algebraic manipulations of (6.8) yield the expression

p (β,Σ|Y ) =
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] (
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)

+

+
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)′
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(

β̂ − b
)

+ ǫ̂′ (Σ ⊗ IT )−1 ǫ̂





,(6.9)

10We are using the following parameterization of the Inverse Wishart density: p (Σ|Ψ, d) =

|Ψ|
d
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2 ·Γn( d

2 )
.
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where B̂ ≡
(

x′x+ Ω−1
)−1 (

x′y + Ω−1b
)

, β̂ ≡ vec
(

B̂
)

, ε̂ ≡ y − xB̂ and ǫ̂ ≡ vec (ε̂). It

can be shown that (6.9) is the kernel of the following Normal-Inverse-Wishart posterior
distribution:

Σ|Y ∼ IW

(

Ψ + ε̂′ε̂+
(

B̂ − b̂
)′

Ω−1
(

B̂ − b̂
)

, T − p+ d

)

(6.10)

β|Σ, Y ∼ N

(

β̂,Σ ⊗
(

x′x+ Ω−1
)−1

)

, (6.11)

where b̂ is a k × n matrix obtained by reshaping the vector b in such a way that each
column corresponds to the prior mean of the coefficients of each equation.

The ML is the integral of the un-normalized posterior:

p (Y ) =

∫ ∫

p (Y |β,Σ) · p (β|Σ) · p (Σ) dβdΣ. (6.12)

Let’s start with the integral with respect to β. Substituting (6.9) into (6.12) we obtain

p (Y,Σ) =
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dβ,

which can be solved by “completing the squares,” yielding
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We are now ready to take the integral with respect to Σ:
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dΣ.(6.13)

The expression for P can be simplified by using the following property of the vec
operator:

vec (A)′ (D ⊗B) vec (C) = tr
(
A′BCD′

)
.

This yields

P = tr

[

ε̂′ε̂Σ−1 +
(

B̂ − b̂
)′

Ω−1
(

B̂ − b̂
)

Σ−1
]

. (6.14)

18



We can now solve the integral by substituting (6.14) into (6.13 ), and multiplying and
dividing the expression inside the integral by the constant term necessary to obtain the
density of an Inverse-Wishart. This results in the following closed-form solution for the
ML:

p (Y ) =
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1
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2 Γn

(
T−p+d

2

)

Γn
(
d
2

) ·

|Ω|−
n
2 · |Ψ|

d
2 ·

∣
∣
∣x′x+ Ω−1

∣
∣
∣

−
n
2 ·

∣
∣
∣
∣Ψ + ε̂′ε̂+

(

B̂ − b̂
)′

Ω−1
(

B̂ − b̂
)
∣
∣
∣
∣

−
T−p+d

2

Appendix B: The MCMC Algorithm

This appendix presents the details of the MCMC algorithm that we use to simulate the
posterior of the coefficients of the BVAR, including the hyperparameters. We use the
following standard Metropolis agorithm:

1. Initialize the hyperparameters γ at their posterior mode, which requires a numer-
ically maximization.

2. Draw a candidate value of the hyperparameters γ∗ from a Gaussian proposal
distribution, with mean equal to γ(j−1) and variance equal to c ·W , where γ(j−1)

is the previous draw of γ, W is the inverse Hessian of the negative of the log-
posterior of the hyperparameters at the peak, and c is a scaling constant chosen
to obtain an acceptance rate of approximately 20 percent.

3. Set

γ(j) =

{

γ∗ with pr. α(j)

γ(j−1) with pr. 1 − α(j),

where

α(j) = min

{

1,
p (γ∗|y)

p
(
γ(j−1)|y

)

}

4. Draw
[

β(j),Σ(j)
]

from p
(

β,Σ|y, γ(j)
)

, which is the density of the Normal-Inverse-

Wishart distribution in (6.10)-(6.11).

5. Increment j to j+1 and go to 2.

Appendix C: Factor augmented regression

We consider the following forecasting equation:

zhi,t+h = ci +
pz−1
∑

s=0

αi,szi,t−s +
r∑

k=1

λikfk,t + ehi,t+h
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where zhi,t+h denotes the h-steps ahead variable to be forecasted. The predictors fk,t, k =
1, ..., r are common factors extracted from the set of all variables. The lags of the target
variable zi,t−s are explicitly used as predictors in order to capture variable specific
dynamics. The regression coefficients are allowed to differ across forecast horizons, but
the dependence is dropped for notational convenience.

The estimation of the forecasting equation is performed in two steps, as in Stock
and Watson (2002a,b). In the first step, the common factors fk,t are estimated by
principal components extracted from a large set of 149 predictors. Before extracting
the common factors, the data are transformed in order to achieve stationarity and
standardized. For details on data definitions and transformations see table 1 and Stock
and Watson (2008).

In the second step, the coefficients are estimated by ordinary least squares. Using all
the principal components (i.e. by setting r equal to the number of variables 149) would
be equivalent to running an OLS regression on all the available regressors. Therefore,
as in Stock and Watson (2008), we set r = 3 ans pz = 4.
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Tables

Table 1: The description of the database

Variables Mnemonic Transf. Transf. Small Medium Large
BVAR Factor Model BVAR BVAR BVAR

Real GDP RGDP log log difference x x x
GDP deflator PGDP logs log difference x x x
Federal Funds Rate FedFunds raw difference x x x
CPI CPI-ALL logs log difference x
Commodity Price Com:spotprice(real) logs log difference x
Industrial Production IP:total logs log difference x
Employment Emp:total logs log difference x
Unemployment Emp:services raw difference x
Real Consumption Cons logs log difference x x
Real Investment Inv logs log difference x
Residential Investment Res.Inv logs log difference x
Non Residential Investment NonResInv logs log difference x
Personal Consumption Expenditures, Price Index PCED logs log difference x
Gross Private Domestic Investment, Price Index PGPDI logs log difference x
Capacity Utilization CapacityUtil raw difference x
Consumer expectations Consumerexpect raw difference x
Hours Worked Emp.Hours logs log difference x x
Real compensation per hours RealComp/Hour logs log difference x x
One year bond rate 1yrT-bond raw difference x
Five years bond rate 5yrT-bond raw difference x
SP500 S&P500 logs log difference x
Effective exchange rate Exrate:avg logs log difference x
Total reserves Reservestot logs log difference x
M2 M2 logs log difference x

Table 2: BVAR MSFE
Small (S) Medium (M) Large (L) Factor M. RW

Horizons Variables VAR BVAR VAR BVAR VAR BVAR

One Quarter Real GDP 13.57 9.61 19.18 7.97 8.18 7.29 10.23
GDP Deflator 1.54 1.32 2.27 1.35 1.10 1.14 5.19

Federal Funds Rates 1.61 1.04 1.83 1.03 1.00 1.25 1.06

One Year Real GDP 5.39 3.85 11.90 3.42 3.97 3.52 3.98
GDP Deflator 1.61 1.45 2.22 1.58 0.96 1.01 4.65

Federal Funds Rates 0.58 0.32 0.56 0.31 0.36 0.32 0.31

Table 3: Average difference of log-scores
Small (S) Medium (M) Large (L)

Horizons Variables vs VAR vs RW vs VAR vs RW vs VAR vs RW

One Quarter Real GDP 0.10 0.06 0.31 0.16 0.17
(0.04) (0.05) (0.05) (0.06) (0.06)

GDP Deflator 0.05 0.74 0.15 0.73 0.81
(0.03) (0.09) (0.05) (0.09) (0.09)

Federal Funds Rates 0.07 0.06 0.10 0.07 0.09
(0.07) (0.08) (0.13) (0.08) (0.10)

One Year Real GDP 0.11 0.00 0.43 0.06 0.03
(0.07) (0.09) (0.12) (0.09) (0.13)

GDP Deflator 0.05 1.00 0.02 0.88 1.18
(0.10) (0.33) (0.22) (0.36) (0.30)

Federal Funds Rates 0.26 0.07 0.27 0.05 -0.03
(0.07) (0.07) (0.12) (0.09) (0.12)
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Figures

Figure 1: Posterior distribution of the hyperparameter gov-
erning the variance of the Minnesota Prior

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

10

20

30

40

50

60

 

 
Large
Medium
Small
Hyperprior

Note: The figure reports the posterior distribution of the hyperparameter λ, the param-

eter governing the variance of the Minnesota prior in the small, medium, large BVARs,

and its prior distribution.
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Figure 2: Impulse responses of real variables
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Note: The figure reports the median (solid line) and the 16th and 84th percentiles

(dashed lines) of the distribution of the impulse response functions of the large BVAR to

a one standard deviation monetary policy shock.
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Figure 3: Impulse responses of nominal variables
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Note: The figure reports the median (solid line) and the 16th and 84th percentiles

(dashed lines) of the distribution of the impulse response functions of the large BVAR to

a one standard deviation monetary policy shock.
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Figure 4: Impulse responses of financial variables
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Note: The figure reports the median (solid line) and the 16th and 84th percentiles

(dashed lines) of the distribution of the impulse response functions of the large BVAR to

a one standard deviation monetary policy shock.
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Figure 5: Impulse responses on simulated data
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Note: The figure reports the impulse responses to a monetary policy shock in the DSGE

model used to generate the data and the median across MonteCarlo replications of the

BVAR and the VAR impulse responses.
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Figure 6: Ratio of MSE: VAR versus BVAR
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Note: The figure reports the ratio of the MSE of the VAR over the MSE of the BVAR.

Values larger than one indicate that the MSE of the VAR is larger than that of the BVAR.
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