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ABSTRACT

How Useful is Bagging in Forecasting Economic Time Series? A
Case Study of US CPI Inflation*

This paper explores the usefulness of bagging methods in forecasting
economic time series from linear multiple regression models. We focus on the
widely studied question of whether the inclusion of indicators of real economic
activity lowers the prediction mean-squared error of forecast models of US
consumer price inflation. We study bagging methods for linear regression
models with correlated regressors and for factor models. We compare the
accuracy of simulated out-of-sample forecasts of inflation based on these
bagging methods to that of alternative forecast methods, including factor
model forecasts, shrinkage estimator forecasts, combination forecasts and
Bayesian model averaging. We find that bagging methods in this application
are almost as accurate or more accurate than the best alternatives. Our
empirical analysis demonstrates that large reductions in the prediction mean
squared error are possible relative to existing methods, a result that is also
suggested by the asymptotic analysis of some stylized linear multiple
regression examples.
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1 Introduction

A common problem in out-of-sample prediction is that the researcher suspects that many pre-
dictors are potentially relevant, but few (if any) of these predictors individually are likely to have
high predictive power. This problem is particularly relevant in economic forecasting, because
economic theory rarely puts tight restrictions on the set of potential predictors. In addition,
often alternative proxies of the same variable are available to the economic forecaster. A case
in point are forecasts of consumer price inflation, which may involve a large number of alterna-
tive measures of real economic activity such as the unemployment rate, industrial production
growth, housing starts, capacity utilization rates in manufacturing, or the number of help wanted
postings, to name a few.

It is well known that forecasts generated using only one of these proxies tend to be unreliable
and unstable (see, e.g., Cecchetti, Chu and Steindel 2000, Stock and Watson 2003). On the other
hand, including all proxies (even if feasible) is thought to lead to overfitting and poor out-of-
sample forecast accuracy. This fact suggests that we use formal statistical methods for selecting
the best subset of these predictors. Standard methods of comparing all possible combinations
of predictors by means of an information criterion function, however, become computationally
infeasible when the number of potential predictors is moderately large.!

One strategy in this situation is to combine forecasts from many models with alternative
subsets of predictors. For example, one could use the mean, median or trimmed mean of these
forecasts as the final forecast or one could use regression-based weights for forecast combination
(see Bates and Granger 1969, Stock and Watson 2003). There is no reason, however, for simple
averages to be optimal, and the latter approach of regression-based weights tends to perform
poorly in practice, unless some form of shrinkage estimation is used (see, e.g., Stock and Watson
1999). More sophisticated methods of forecast model averaging weight individual forecasts by
the posterior probabilities of each forecast model (see, e.g., Min and Zellner 1993, Avramov 2002,
Cremers 2002, Wright 2003a and Koop and Potter 2003 for applications in econometrics). This
Bayesian model averaging (BMA) approach has been used successfully in forecasting inflation
by Wright (2003b). An alternative strategy involves shrinkage estimation of the unrestricted
model that includes all potentially relevant predictors. Such methods are routinely used for
example in the literature on Bayesian vector autoregressive models (see Litterman 1986). A
third strategy is to reduce the dimensionality of the regressor set by extracting the principal
components from the set of potential predictors. If the data are generated by an approximate
factor model, then factors estimated by principal components analysis can be used for efficient
forecasting under quite general conditions (see, e.g., Stock and Watson 2002a, 2002b; Bai and
Ng 2004).2

A fourth strategy is to rely on a testing procedure for deciding which predictors to include in
the forecast model and which to drop. For example, we may fit a model including all potentially

!See Inoue and Kilian (2004) for a discussion of this and related approaches to ranking competing forecast models.
The difficulty in using information criteria when the number of potential predictors, M, is large is that the criterion
must be evaluated for 2™ combinations of predictors. For M > 20 this task tends to become computationally
prohibitive.

2A closely related approach to extracting common components has been developed by Forni et al. (2000, 2001)
and applied in Forni et al. (2003).



relevant predictors, conduct a two-sided t-test for each predictor and discard all insignificant
predictors prior to forecasting. Such pre-tests lead to inherently unstable decision rules in that
small alterations in the data set may cause a predictor to be added or to be dropped. This
instability tends to inflate the variance of the forecasts and may undermine the accuracy of pre-
test forecasts in applied work. The predictive accuracy of simple pre-test strategies, however,
may be greatly enhanced by application of the bagging technique, leading to a fifth strategy
that will be the focus of this paper.

Bagging is a statistical method designed to reduce the out-of-sample prediction mean-squared
error of forecast models selected by unstable decision rules such as pre-tests. The term bagging
is short for bootstrap aggregation (see Breiman 1996). In essence, bagging involves fitting the
unrestricted model including all potential predictors to the original sample, generating a large
number of bootstrap resamples from this approximation of the data, applying the pre-test rule
to each of the resamples, and averaging the forecasts from the models selected by the pre-test
on each bootstrap sample.

By averaging across resamples, bagging effectively removes the instability of the decision
rule. Hence, one would expect the variance of the bagged prediction model to be smaller than
that of the model that would be selected based on the original data. Especially when the
decision rule is unstable, this variance reduction may be substantial. In contrast, the forecast
bias of the prediction model is likely to be of similar magnitude, with or without bagging.
This heuristic argument suggests that bagging will reduce the prediction mean squared error
of the regression model after variable selection. Indeed, there is substantial evidence of such
reductions in practice. There are some counterexamples, however, in which this intuition fails
and bagging does not improve forecast accuracy. This fact has prompted increased interest in
the theoretical properties of bagging. Bithlmann and Yu (2002) recently have investigated the
ability of bagging to lower the asymptotic prediction mean-squared error (PMSE) of regressions
with a single regressor when the data are i.i.d. They show that bagging does not always improve
on pre-testing, but nevertheless has the potential of achieving dramatic reductions in asymptotic
forecast mean squared errors.

In this article, we explore the usefulness of bagging methods in forecasting economic time
series from linear multiple regression models. Such forecasting models are routinely used by
practitioners, but no attempt has been made to utilize bagging methods in this context.? In
section 2, we show how the bagging proposal may be adapted to applications involving mul-
tiple regression models with possibly serially correlated and heteroskedastic errors. We briefly
review the theory behind bagging, and - drawing on the analysis of the single-regressor model
in Biithlmann and Yu (2002) - provide some intuition for how and when bagging works in the
single-regressor model with iid data. We then investigate the asymptotic properties of bagging
in the multiple regressor model. We discuss applications of bagging in the correlated regressor
model as well as in factor models. Our analysis of some stylized examples shows that bagging
has the potential of reducing the asymptotic prediction mean-squared error in the multiple re-
gressor model. This result holds when we apply the bagging method to the M largest estimated
factors of a factor model, where M is treated as fixed, as well as when bagging is applied to

3In related work, Lee and Yang (2004) study the properties of bagging in binary prediction problems and quantile
prediction of economic time series data.



the regressors of a correlated regressor model. In the latter case, the potential for asymptotic
gains arises, whether the regressors have been orthogonalized or not, except when the degree of
correlation is very high.

While these theoretical results are encouraging, they are not dispositive. First, the extent to
which the asymptotic gains in accuracy suggested by our theory translate into PMSE reductions
in finite samples is unclear. Second, our asymptotic analysis shows that the relative performance
of bagging will depend on unknown features of the data generating process, so the performance
of bagging must be assessed case by case. Third, our asymptotic results treat the regressors as
exogenously given. This simplifying assumption facilitates the derivation of asymptotic results.
When regressors are possibly endogenous, as seems plausible in many applications in economics
and finance, the asymptotic theory for the bagging predictor becomes intractable.*

We therefore recommend that, in practice, researchers choose between the alternative fore-
casting methods based on the ranking of their recursive PMSEs in simulated out-of-sample
forecasts. In section 3, we illustrate this approach for a typical forecasting problem in eco-
nomics. Specifically, we investigate whether one-month and twelve-month ahead CPI inflation
forecasts for the United States may be improved upon by adding indicators of real economic
activity to models involving only lagged inflation rates. This empirical example is in the spirit of
recent work by Stock and Watson (1999, 2003), Marcellino et al. (2003), Bernanke and Boivin
(2003), Forni et al. (2003) and Wright (2003b), among others.

We show that bagging is a very accurate forecasting procedure in this empirical application.
Bagging outperforms the benchmark model involving only lags of inflation, the unrestricted
model and factor models with rank 1, 2, 3, or 4 and different lag structures. Given that
bagging may be viewed as a shrinkage estimator, we also compare its performance to Bayesian
shrinkage estimators. We find that bagging forecasts in some cases are almost as accurate as the
forecast from the best Bayesian shrinkage estimator and in the others more accurate. Bagging
also is more accurate than forecast combination methods such as equal-weighted forecasts of
models including one indicator of real economic activity at a time or the type of BMA studied
by Wright (2003b). Finally, we show that bagging forecasts - depending on the horizon - are
almost as accurate as or somewhat more accurate than BMA forecasts generated using the
method of Raftery, Madigan and Hoeting (1997) that is based on randomly selected subsets of
the predictors. The superior performance of bagging methods in this application is robust to
increasing the number of potential predictors by 25% and to decreasing it by 25%.

We also contrast the relative performance of alternative methods of bagging in this context.
While all bagging methods perform well in this application, bagging predictors based on the
orthogonalized regressors are slightly more accurate than those based on the untransformed
regressors. Bagging predictors based on the M largest principal components also worked well.
This finding is surprising as the cross-sectional dimension of our problem is relatively small,
casting doubt on the applicability of standard asymptotic arguments for bagging factor models.
An interesting avenue for future research will be the use of bagging methods on panels with
large cross-sections that are commonly used in other forecasting applications. We conclude in
section 4.

1A similar exogeneity assumption has also been used in the literature to facilitate the derivation of the PMSE of
factor model forecasts (see, e.g., Bai and Ng 2004, p.4).



2 How Does Bagging Work?
Consider the forecasting model:
Yten = B/mt+5t+h7 h = 1,2,3,... (1)

where €, , denotes the h-step ahead linear forecast error, 8 is an M-dimensional column vector
of parameters and z; is a column vector of M predictors at time period t. We presume that y;
and x; are stationary processes or have been suitably transformed to achieve stationarity.

Let 3 denote the ordinary least-squares (OLS) estimator of 3 in (1) and let ¢; denote the
t-statistic for the null that (3; is zero in the unrestricted model, where §; is the jth element of
B. Further, let 4 denote the OLS estimator of the forecast model after variable selection. Note
that - unlike Bithlmann and Yu (2002) - we re-estimate the model after variable selection. For
z; € RM | we define the predictor from the unrestricted model (UR), the predictor from the
fully restricted model (F'R), and the pre-test (PT) predictor conditional on xr_p41 by

gV (er_p1) = Bar_na,
9" (@r—ns1) = 0,
g)PT(xT,hH) = 0, if |t;| <cVj and g}PT(acT,hH) =7 Srxr_ph i1 otherwise,

where S7 is the stochastic selection matrix obtained from the M x M diagonal matrix with
(i,1)th element I(|t;| > ¢) by deleting rows of zeros, and c is the critical value of the pre-test.

The U R model forecast is based on the fitted values of a regression including all M potential
predictors. The F'R model forecast emerges when all predictors are dropped, as in the well-
known no-change forecast model of asset returns. The latter forecast sometimes is also referred
to as a random walk forecast in the literature.

The pre-test strategy that we analyze is particularly simple. We first fit the unrestricted
model that includes all potential predictors. We then conduct two-sided ¢-tests on each slope
parameter based on a pre-specified critical value ¢. We discard the insignificant predictors
and re-estimate the final model, before generating the PT forecast. In constructing the t¢-
statistic we use appropriate standard errors that allow for serial correlation and/or conditional
heteroskedasticity. Specifically, when the error term follows an MA(h — 1) process, the pre-test
strategy may be implemented based on White (1980) robust standard errors for A = 1 or West
(1997) robust standard errors for h > 1. For more general error structures, nonparametric
robust standard errors such as the HAC estimator proposed by Newey and West (1987) would
be appropriate.

2.1 Algorithm for Bagging Dynamic Regression Models

The bootstrap aggregated or bagging predictor is obtained by averaging the pre-test predictor
across bootstrap replications. Bagging can in principle be applied to any pre-testing strategy,
not just to the specific pre-testing strategy discussed here, and there is no reason to believe that
our t-test strategy is optimal. Nevertheless, the simple t-test strategy studied here appears to
work well in many cases.



Definition 1. [BA method] The bagging predictor in the standard regression framework is defined

as follows:
(1) Arrange the set of tuples {(ys+n,x})}, t = 1,...,T—h, in the form of a matriz of dimension
(T —h) x (M +1):

A
Yi+h Ty
yr LTr_p

Construct bootstrap samples (Y7, 21"), ., (Y7, 27 _,) by drawing with replacement blocks of
m rows of this matrix, where the block size m is chosen to capture the dependence in the error
term (see, e.g., Hall and Horowitz 1996, Gongalves and White 2004).

(#i) For each bootstrap sample, compute the bootstrap pre-test predictor conditional on Tp_py1

G (wr—pga) =0, if [£5] < ¢ Vj and 77 (wp_p41) =3 S7a7_ps1 otherwise,

where ¥*and St are the bootstrap analogues of Yand St, respectively. In constructing |t}| we

compute the variance of \/TB* as H*=1V*H*~1 where

m
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Eiin = Yien — Z?\*’:L’f, and b is the integer part of T /m (see, e.g., Inoue and Shintani 2003).
(#i1) The bagged predictor is the expectation of the bootstrap pre-test predictor across bootstrap
samples, conditional on Tp_p41:

PPN @r—n1) = E*FY Siar—nial,

where E* denotes the expectation with respect to the bootstrap probability measure. The bootstrap
expectation in (1i1) may be evaluated by simulation:

1 _—
.BA ~
9PN (ern) = EZ’y*“S}?mT_hH,

=1

where B = oo in theory. In practice, B = 100 tends to provide a reasonable approximation.

An important design parameter in applying bagging is the block size m. If the forecast
model at horizon h is correctly specified in that E(e;y5|Q2:) = 0, where Q; denotes the date ¢



information set, then m = h (see, e.g., Gongalves and Kilian 2004). Otherwise m > h. In the
latter case, data-dependent rules such as calibration may be used to determine m (see, e.g.,
Politis, Romano and Wolf 1999).

The performance of bagging will in general depend on the critical value chosen for pre-testing
not unlike the way in which shrinkage estimators depend on the degree of shrinkage. In practice,
c may be chosen by comparing the accuracy of the bagging forecast method for alternative values
of ¢ in simulated out-of-sample forecasts. This question will be taken up in section 3 when we
discuss the empirical application.

2.2 Asymptotic Properties of the Bagging Predictor in the Single-
Regressor Model

Bithlmann and Yu (2002) have analyzed the asymptotic properties of the bagging algorithm in
Definition 1 for the special case of a linear model with only a single regressor when the data
are i.i.d. They showed that the BA predictor in many (but not all) cases has lower asymptotic
PMSE than the PT predictor. It is instructive to review this evidence. Let 8 = §T1/2, and,
for expository purposes, suppose that z; = 1 Vt, &; is distributed iid(0,0?), 02 =1, and h = 1.
In that case, the forecasts from the unrestricted (UR) model, the fully restricted (F'R) model
and the pre-test (PT) model, and the bagging (BA) forecast can be written as

v = B,

gro= 0,

9t = BI(TY?B|> o),
B

~BA

S

3*ZI(‘T1/2BM| >C).
=1

K2

We are interested in comparing the asymptotic PMSE of these predictors.

Definition 2. [APMSE] The asymptotic PMSE (or APMSE) is defined as the second-order term
of the asymptotic approximation of the prediction mean squared error:

Bl(3(a) ~ u(@)?] = o* + S APMSE(i(z) + o0 (%) |

Following Biithlmann and Yu (2002) it can be shown that:

UR

APMSE@{VE(x) = 1,

APMSE ("R (z)) = &%,

APMSE(§"" (z)) = E[(€—0)I(|¢] > ¢) +8I(I¢] < o)),
APMSE(§5(x)) Bl —&+EP(c—€) — ¢lc— &)

—£0(—c— &) + ¢(—c— .
where £ ~ N(4,1).



How does the APMSE of the BA predictor compare to that of the PT predictor? Note
that the APMSE expression for the BA predictor does not depend on the indicator function,
reflecting the smoothing implied by bootstrap aggregation. Although this smoothing should
typically help to reduce the forecast variance relative to the PT predictor, it is not obvious a
priori whether bagging the pre-test predictor will also improve the APMSE. Figure 2 inves-
tigates this question. We set ¢ = 1.96 for expository purposes. The upper panel shows the
squared asymptotic bias of the two predictors. Although bagging does reduce the asymptotic
bias somewhat for most values of §, the gains are small. The second panel, in contrast, shows
dramatic reductions in variance relative to the PT predictor for most ¢, which, as shown in
the third panel, result in substantial improvements in the overall accuracy measured by the
APMSE. Figure 2 illustrates the potential of the bagging principle to improve forecast accu-
racy relative to the pre-test. As noted by Biithlmann and Yu (2002), although this improvement
does not occur for all values of 4, it does for a wide range of .

More importantly, from our point of view, it can be shown that for some values of ¢ bagging
will have lower APMSE than the FR and UR predictors as well. We illustrate this fact in
Figure 2, which plots the APMSESs of the UR, FR, PT and BA predictors as a function of 4.
For § > 1 the UR predictor has lower APM SFE than the FR predictor, for 6 = 1 both models
are tied and for § < 1 the F'R predictor is asymptotically more accurate. Although the PT
predictor protects the user from choosing the UR forecast when § is close to zero and the F'R
forecast when ¢ is large, the PT predictor for any given choice of ¢ is always dominated by
either the UR or the FR predictor.” In contrast, the BA predictor not only dominates the PT
predictor for most values of §, but for values of § near one, it has the lowest APMSFE of all
predictors shown in Figure 2.

This stylized example based on Bithlmann and Yu (2002) conveys two valuable insights: First,
bagging under certain conditions can yield asymptotic improvements in the PMSE relative to
the UR, FR, and PT predictors. This fact suggests that it deserves further study. Second, the
extent of these asymptotic improvements depends very much on unobservable features of the
data. Under some conditions bagging may actually result in a higher asymptotic PMSE than
alternative methods. This seems especially likely when the signal-to-noise ratio in the data is
very weak, as in forecasting asset returns for example. This is not a limitation of the bagging
method alone, of course, but simply a reflection of the bias-variance trade-off in forecasting.
The same type of problem would arise with any other forecasting method in the literature.

2.3 Asymptotic Properties of the Bagging Predictor in the Correlated-
Regressor Model

The example of Bithlmann and Yu (2002), while instructive, is of limited relevance for applica-
tions of bagging to the multiple linear regression model. In practice, predictors will inevitably
be correlated to various degrees and this correlation will affect the PMSE and potentially the
ranking of the forecasting methods. In this subsection, we will establish that the qualitative
findings of Bithlmann and Yu (2002) for the single-regressor model continue to hold in the
multiple regressor model. We do so in the simplest possible setting when the regressors are iid.

SFor a related discussion of the MSE of inequality constrained estimators see Thomson and Schmidt (1982).



2.3.1 Case 1: Bagging the Untransformed Predictors

We begin by deriving the APMSE for the UR, FR, PT, and BA predictors in the correlated
regressor model with iid regressors.

Assumption 1.

(a) x; and e; are iid over time with finite fourth moments and z; and &; are independent of
one another.

(b) ys = 'y + €4 where 8 = T-1/2§.

(c) T-1/2 Zle 25 S N(0,0%E(x2})) where 02 > 0 and E(zy2}) is positive definite.

Proposition 1. Under Assumption 1

APMSE@VE(z)) = E[(& - 6)z]?

APMSE(§" R (z)) (6'z)?,

APMSE(§"" (z)) = E[¢'E(x})S (SE(wa})S') " Sal (3 s.t. |£j|>c\/JQ[(E(:vtrci))*]m—6/96]2,
APMSE(§P4(z)) = E{E[{"E(zw;)S"(S*E(zxy)S™) S 2l (3j s.6.[&5] > c\/ o2[(B(xxy))~j5)[€] — 6’}

where ¢ and £* are M-dimensional random vectors such that & ~ N (3, 0%[E(zz})]~!) and
£¥|€ ~ N(&,02(BE(zyxh))™1), S is the stochastic selection matrix obtained from the M x M
diagonal matrix with (,4)th element I(|&;] > c\/02[(E(za})) 1) by deleting rows of zeros,
and S* is defined as S with £ replaced by £*.

The proof of Proposition 1 is in the Appendix.

The results of Proposition 1 may be used to study the relative merits of these forecasting
strategies for a given data generating process. Although the APMSE has no closed form solu-
tion it is straightforward to evaluate the APMSE given by Proposition 1 by simulation. In the
examples below, we evaluate all expectations based on 5000 random draws. To facilitate graph-
ical representations, we focus on the simplest possible correlated regressor model. We postulate
that M = 2. Let pe{0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9} denote the correlation between these
regressors. Furthermore, let § = (01, 62)' where §; varies in the range between 0 and 2, as in
the single-regressor model, while d5 is arbitrarily fixed at 0.55 for expository purposes. Similar
results are obtained for other choices of d,.To facilitate comparisons with the single-regressor
example, we postulate that e; is distributed #id(0, 1), and we evaluate all forecasts at xr = 1.

Figure 3 plots the relative APMSFE of the PT and BA methods as a function of ¢; and
p. Ratios above unity indicate that the BA predictor has lower APMSE. In this and the
subsequent figures we cut off ratios below unity by imposing a plane of unit height on the
graph. This plane highlights the contours of the region, in which the BA predictor works better
than the alternative(s). The results in Figure 3 are stronger than for the single-regressor case
in that the PT predictor has lower APMSE for all combinations of §; and p. More importantly,



Figure 4 establishes that there is a set of pairs of §; and p, for which the BA predictor has
lower asymptotic PMSE than any of the other methods under consideration. As expected the
BA predictor works best for intermediate ranges of §;. When 47 is very small or very large, the
FR and UR predictors, respectively, will be more accurate than the BA predictor. The range
of 61, for which the BA predictor.has the lowest APMSE, shrinks somewhat, as p increases.
The results in Figures 3 and 4 of course are specific to the stylized example. Here our aim
has only been to establish that there are potential asymptotic gains in accuracy from bagging
even in the correlated regressor model. How large these gains from bagging will be in practice,
will depend on unknown features of the data generating process and is an empirical question.

2.3.2 Case 2: Bagging the Orthogonalized Predictors

One seeming drawback of the bagging proposal in Definition 1 is that when predictors are
correlated the effective size of the t-tests on individual predictors will be distorted. This fact
suggests an alternative approach to bagging in which the predictors are orthogonalized prior to
conducting the t-tests. This may be accomplished as follows:

Definition 8. [CBA method] The bagging predictor for the orthogonalized regressors may be
obtained via a Cholesky decomposition as follows:

(1) Arrange the set of tuples {(yt+n,x})}, t = 1,...,T—h, in the form of a matriz of dimension
(T'—h) x (M +1):

/
Yi+n Ty

Yyr LTr_p

Construct bootstrap samples (Y7, 1), ..., (v, @7 _,) by drawing with replacement blocks of
m rows of this matrix, where the block size m is chosen to capture the dependence in the error
term.

(ii) Compute the orthogonalized predictor T = P'~'x;, where P is the Cholesky decompo-
sition of E(x:x}), i.e., the M x M upper triangular matrix such that P'P = E(z;x}). For each
bootstrap sample, compute the bootstrap pre-test predictor conditional on Tp—_py1

ZQ*PT(ET_}H_l) =0, if |t;| < c¢Vj and ZQ*PT(fT_h_H) =" S5Z7_py1 otherwise,

where ¥*and S} are the bootstrap analogues of Yand Sy, respectively, applied to the orthogo-

nalized predictor model. In constructing |t;k\ we compute the variance of \/TB* as H*=1V*[*1
where
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Erin = Yign — E*'if, and b is the integer part of T /m.
(#i1) The bagged predictor is the expectation of the bootstrap pre-test predictor across bootstrap
samples, conditional on Tq_piq:

§OPANEr—ns1) = E* (7 S5Tr—nial,
where E* denotes the expectation with respect to the bootstrap probability measure. The bootstrap
expectation in (iii) may be evaluated by simulation based on B bootstrap replications:

B
1 o

~CBA /~ ~ *i~

§OBA @ _p) = B Eﬁ VY SHT T _py1-

It is unclear a priori whether the C BA method will select superior forecast models. In the
context of bagging the purpose of the pre-test is to select a forecast model with lower PMSE,
not to uncover the true relationship in the data. As we have already seen, notwithstanding the
existence of size distortions, the BA method may lower the APMSE even in the presence of
correlated regressors. An interesting question is whether the performance of bagging may be
improved by orthogonalizing the predictors. For this purpose, we now derive the APMSE for the
CBA predictor in the correlated regressor model with i.i.d. regressors, given by Assumption 1.
We also derive the APMSE of the corresponding pre-test predictor based on the orthogonalized
regressors (C'PT).

Proposition 2. Under Assumption 1
APMSE®HCrT (&) = E(ES'SiI(3jst. & > co) — 8z,
APMSE(H°P4z)) = E[B('SYS*ZI(3js.t. || > co)|¢) — §'a]?
where #,€ and £ are M-dimensional random vectors such that & = P'~'z, £ ~ N(P6,0%Iy),
and £*|¢ ~ N(€,021y), S is the stochastic selection matrix obtained from the M x M diagonal
matrix with (¢,4)th element I(|§;| > co) by deleting rows of zeros, S* is defined as S with ¢

replaced by ¢*, and P is the Cholesky decomposition of E(z:x}), that is, the M x M upper
triangular matrix, P, such that P'P = E(x:x}).

The proof of Proposition 2 is in the Appendix.

Returning to the stylized example with M = 2, we now investigate the relative APMSFE of
the C'BA predictor. Figure 5 plots the APMSFE ratios of the C BA predictor relative to the
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best alternative model. The underlying model is the same as that for Figures 3 and 4. As in
Figure 4, there is a range of pairs of ; and p, for which the C'BA predictor has lower APMSFE
than any other method under consideration. This range is slightly smaller than for the BA
predictor when p is large. There is no clear ranking of these two bagging methods in terms of
the APMSE, however.

Obviously, there is no reason for this stylized example to be representative. Actual gains in
accuracy may be higher or lower than shown here. Nevertheless, this example establishes that
bagging predictors, whether based on untransformed or orthogonalized predictors, may have
desirable asymptotic properties at least under some circumstances.

2.4 Asymptotic Properties of the Bagging Predictor in the Factor
Model

Bagging methods for the correlated regressor model are not designed to handle situations when
the regressor matrix is of reduced rank. A leading example of a reduced rank structure is a
factor model. In that case the forecasting model reduces to:

Yorn = B fe+epn, h=1,23, .. (2)

where f; denotes a vector of the M largest factors which may be extracted from the set of N
potential predictors by principal components analysis (see, e.g., Stock and Watson 2002a,2002b).
We treat M as fixed with respect to T'. By construction we require M < T'. It is straightforward
to adapt the bagging method to this situation.

Definition 4. [BAY method] The bagging predictor in the factor model framework is defined as
follows:

(1) Use principal components analysis to extract the M largest common factors from the
T x N matrix X of potential predictors. Denote the date ¢ observation of these factor estimates
by the M x 1 vector f;. R

(i1) Arrange the set of tuples {(ye+n, fi)}, t = 1,..., T—h, in the form of a matriz of dimension
(T —h) x (M +1):

Yirn J1
yr foh

*

Construct bootstrap samples (yi .y, f{*% e L (Y5, A}_h) by drawing with replacement blocks
of m rows of this matrix, where the block size m is chosen to capture the dependence in the error
term, and subsequently orthogonalizing the bootstrap factor draws via principal components.

(#i1) For each bootstrap sample, compute the bootstrap pre-test predictor conditional on

foh+1

G T (frongr) =0, if |t;] < cVj and G (fr_nt1) = 7% S5 fr—n41 otherwise,
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where ¥* and S are the bootstrap analogues of Yand Sy, respectively, applied to the factor model.

In constructing \t;f|, compute the variance of \/TB* as H*=YV*H*~1 where

-~

Z k 1)m+z k: 1)m+z+h)(f(yﬂkfl)erjg’(kal)erjJrh)/’
j=1

o
Il
A

S)

I

o

g~
- M-

Ms

m*>

Il
|-
Ms

(f(k 1)m+zf(k 1)m+z’)7

ko

=11

.
Il
-

Errn = Yien — B fr, and b is the integer part of T/m.
(iv) The bagged predictor is the expectation of the bootstrap pre-test predictor across bootstrap
samples, conditional on fr_pi1:

~ r * [Nk * N
9B (Fr_np1) = B[R S5 Fr_nil,

where E* denotes the expectation with respect to the bootstrap probability measure. The bootstrap
expectation in (iv) may be evaluated by simulation based on B bootstrap replications:

%

~BAF

954 (Fronr) = Z FSF Frona-

We now derive the APMSFE of the UR, FR, PT and BA predictors applied to the factor
model:

Assumption 2.

(a) f; and &; are iid over time with finite fourth moments and f; and &; are independent of
one another.

(b) y: = B fi + ¢ where 8 = T-1/26.
(c) T—1/2 Zle fiee & N(0,0215)) where o2 > 0.
(d) fi—fi= O, (T~1/2) uniformly in ¢ and plim(1/7) Z;";l(ﬁ — fr)er =

Proposition 8. Under Assumption 2

= E(fz—dz)?

URF

APMSEGUE ()

APMSE@™ (z)) = (5')%,

APMSE@FT (x)) = E[€8'SzI(3jst. |¢| > co) — 8z,
APMSE(GPA () = E[B(€"SYS 213 ] s.t. |€F] > co)|€) — 8],
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where £ and £* are M-dimensional random vectors such that & ~ N (8, 0%1yr), £*[€ ~ N (&, 0%1),
S is the stochastic selection matrix obtained from the M x M diagonal matrix with (4,4)th
element I(|&;| > co by deleting rows of zeros, and S* is defined as S with £ replaced by £*.

The proof of Proposition 3 is in the Appendix.

Assumption 2(d) is satisfied if /T /N — 0 as N, T — oo and if the factors are exogenous (see
Theorem 2 of Bai and Ng, 2004).° The assumption that VT /N — 0 is appealing when N > T,
as is the case in many applications of factor models. Since the estimation uncertainty about the
factors is negligible asymptotically under these assumptions, and the factors are orthogonal by
construction, the asymptotic properties of the bagging predictor based on M < T < N estimated
factors will be the same as for the bagging predictor in the standard regression model with M
orthogonal predictors. From Figure 4 it is immediately apparent that the bagging predictor
may have lower asymptotic PMSE than the UR, FFR or PT models for certain combinations of
6 and p =0.

When T > N, as in our empirical application in the next section, one would not expect
the usual asymptotic approximation to work well. Thus, we have no reason to expect the
bagging predictor based on the M largest estimated factors to be any more accurate than other
methods. We nevertheless will include the BA"method in the empirical section as an additional
competitor.

3 Application: Do Indicators of Real Economic Activity
Improve the Accuracy of U.S. Inflation Forecasts?

There are two main limitations of the asymptotic analysis in the preceding section. First, in the
theoretical analysis we have treated the regressors as exogenous, which rarely will be appropriate
in applied work, and we have focused on a very stylized example. In more general settings, it
is difficult to work out analytical solutions for the asymptotic PMSE of the bagging method in
multiple regression, and indeed not particularly informative since we do not know the properties
of the data generating process and cannot consistently estimate the relevant parameter § (or
its multiple regression analogue). Second, nothing ensures that the finite-sample properties of
bagging are similar to its asymptotic properties. We therefore have no way of knowing a priori
whether the data generating process in a given empirical application will favor bagging or some
other forecasting method. It is also unclear which of the three alternative bagging methods
discussed in section 2 will work best in a given application.

The question of whether bagging works better than the alternatives must be resolved on
a case-by-case basis. We recommend that, in practice, researchers choose between competing
forecasting methods based on the ranking of their recursive PMSE in simulated out-of-sample
forecasts. The model with the lower recursive PMSE up to date T'— h will be chosen for
forecasting yr41. We will illustrate this approach in this section for a typical forecasting problem

SWhen N diverges at a slower rate than 7', the analysis becomes less tractable. We do not pursue this question
here.

13



in economics.

We investigate whether one-month and twelve-months ahead U.S. CPI inflation forecasts
may be improved upon by adding indicators of real economic activity to models involving only
lagged inflation rates. This empirical example is in the spirit of recent work by Stock and Watson
(1999), Bernanke and Boivin (2003), Forni et al. (2003), and Wright (2003b), among others.
The choice of the benchmark model is conventional (see, e.g., Stock and Watson 2003, Forni et
al. 2003) as is the focus on the PMSE. The lag order of the benchmark model is determined by
the AIC subject to an upper bound of 12 lags. The optimal model is determined recursively in
real time, so the lag order may change as we move through the sample.

Since there is no universally agreed upon measure of real economic activity we consider
26 potential predictors that can be expected to be correlated with real economic activity. A
complete variable list is provided at the end of the paper. We obtain monthly data for the
United States from the Federal Reserve Bank of St. Louis data base (FRED) and the Federal
Reserve Board. Note that measures of wage cost and productivity are not available at monthly
frequency for our sample period. We convert all data with the exception of the interest rates into
annualized percentage growth rates. Interest rates are expressed in percent. Data are used in
seasonally adjusted form where appropriate. All predictor data are standardized (i.e., demeaned
and scaled to have unit variance and zero mean), as is customary in the factor model literature.
We do not attempt to identify and remove outliers.

3.1 Unrestricted, Pre-Test and Dynamic Factor Model Forecasts

The alternative forecasting strategies under consideration in the first round of comparisons
include the benchmark model involving only an intercept and lags of monthly inflation and eleven
models that include in addition at least some indicators of economic activity. The unrestricted
regression model (UR) includes one or more lags of all 26 indicators of economic activity as
separate regressors in addition to lagged inflation. The pre-test predictor (PT, CPT) uses only
a subset of these additional predictors. Similarly, the pre-test predictor based on the factor model
(PTF) uses only a subset of the 26 principal components of the set of indicators. The subsets
for the pre-test strategy are selected using 2-sided t¢-tests for each predictor. We experimented
with a range of critical values c.

The bagging forecast (BA, CBA, BAT) is the average of the corresponding pre-test forecasts
across 100 bootstrap replications with M = 26. For the one-month ahead forecast model there
is no evidence of serial correlation in the unrestricted model, so we use White (1980) robust
standard errors for the pre-tests and the pairwise bootstrap. For the twelve-month ahead-
forecast we use West (1997) standard errors with a truncation lag of 11 and the block bootstrap
with m = 12. Throughout this section we set B = 100.

Finally, we also fit factor models with rank r € {1,2,3,4} to the 26 potential predictors
and generate forecasts by adding one or more lagged values of this factor to the benchmark
model (F'M). We estimate the factors by principal components analysis as in Stock and Watson
(2002a, 2002b). To summarize, the forecast methods under consideration are:
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where Wf+ 5, denotes the rate of inflation over the period ¢ to ¢ + h and superscript 7 the denotes
parameter estimates for the ith bootstrap replication.

The accuracy of each forecasting method is measured by the average of the squared forecast
errors obtained by recursively re-estimating the model at each point in time ¢ and forecasting
7r£1+h. Note that we also re-estimate the lag orders at each point in time. The evaluation
period consists of 240 observations covering the most recent twenty years in the sample. Table
1 summarizes the results for the unrestricted model, the three pre-test methods and the four
factor models. Table 1a shows the results for one-month ahead forecasts of U.S. CPI inflation
(h = 1); Table 1b the corresponding results for one-year ahead forecasts (h = 12). The best
results for each method are shown in bold face.

We compute results for each of these methods for up to three lags of the block of indica-
tor variables in the unrestricted model. Note that adding more lags tends to result in near-
singularity problems, when the estimation window is short. In some cases, even with only two
lags of the 26 indicator variables there are near-singularity problems at the beginning of the
recursive sample. When such problems arise, the corresponding entry in the table has been
left blank. We also show results based on the SIC with an upper bound of 2 lags. For larger
upper bounds, again near-singularity problems tend to arise at the beginning of the sample. In
contrast, factor models are more parsimonious and hence allow for richer dynamics. We show
results for models including up to five additional lags of the estimated factor. We also allow the
lag order q to be selected by the SIC. The SIC generally produced more accurate forecasts than
the AIC. The results are robust to the upper bound on the lag order.

Table 1a shows that somewhat surprisingly the U R model with one lag is the most accurate
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forecasting procedure. At h = 1, factor models, in contrast, outperform the benchmark at
best by 3 percentage points. These results are robust to extending or shortening the evaluation
period of 240 observations. One would expect that imposing the factor structure becomes more
useful at longer forecast horizons. Table 1b shows the corresponding results for a horizon of
twelve months (h = 12). In that case, the benchmark model no longer is an autoregression. At
this longer horizon, factor models achieve PMSE gains of up to 33 percentage points relative to
the benchmark model. Although the factor models are still outperformed by the unrestricted
predictor when the number of lags of the extra predictors is fixed at one, allowing the factor
models more flexibility allows it to beat the unrestricted predictor by almost 3 percentage points.
Using the SIC for selecting the lag order ¢ at each point in time does not necessarily improve
the accuracy of the forecast model forecasts relative to fixed lag structures for the factor models,
but it helps to keep down the PMSE of the UR and pre-test predictors that are particularly
sensitive to overfitting.

Tables 1a and 1b also suggest that pre-testing usually does not improve forecasting accuracy
relative to the unrestricted model. Both the PT and C'PT predictors do worse than the best UR
predictor. Similarly, more often than not, the PT¥ strategy performs worse than including a
small fixed number of principal components.” The poor performance of pre-test based strategies
is not unexpected, given the motivation for bagging. The performance of the corresponding
bagging strategies is summarized in Table 2. For the bagging methods we do not report results
for more lags than one to conserve space. We note, however, that the performance of bagging
rarely improves with more than one lag of the extra predictors.

An important question in implementing bagging is which critical value to use. Table 2
presents the results of a grid search for each of the three bagging methods that helps answer
that question. We considered ce{2.575,2.241,1.96, 1.645, 1.440, 1.282,0.675}. Table 2 shows that
the performance of the bagging methods is remarkably insensitive to the choice of ¢ over this
range. Table 2 also suggests that ¢ = 1.96 results in the highest accuracy for the BA predictor,
whereas a somewhat higher value of ¢ = 2.575 works best for the CBA and BAY predictors.
The results holds whether we focus on h =1 or h = 12.

Compared to the methods in Table 1, all three bagging predictors are far more accurate.
The bagging forecasts outperform the benchmark autoregressive model, the unrestricted model,
the factor models with rank 1, 2, 3, or 4 (regardless of lag structure) and the three pre-test
predictors. The gains in accuracy relative to the benchmark model are substantial. The CBA
predictor is the most accurate bagging procedure at the one-month horizon with a PMSE ratio of
82% relative to the benchmark model, closely followed by the BA* and BA predictors with 83%
each. At the one-year horizon, again the CBA predictor is most accurate with 56%, followed
by the BAF predictor with 57% and the BA predictor with 58%. The strong performance of
the BAY predictor is somewhat surprising, given the relatively small cross-sectional dimension
in this application.

It is also worth noting the gains in accuracy relative to the best factor model. They amount
to up to 15 percentage points at h = 1 and up to 11 percentage points at h = 12. It is particularly
interesting to compare the BAF predictor that selects a subset of the first M factors and the

"Clearly, the performance of the pre-test predictors will depend on the choice of critical value. To conserve space
we only report the results for ¢ = 1.96. Qualitatively similar results are obtained for other values of c.
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factor model forecasts based on a small fixed number of factors. Whereas the performance of
the PTT predictor in Table 1 was disappointing, its bagged version is a resounding success.
The substantial gains in accuracy from bagging are even more surprising in that the dynamics
allowed for in bagging are much more restrictive than for factor models.

3.2 Sensitivity Analysis

Given the strong performance of bagging it is important to note that we did not in any way
select our predictors based on the results of previous studies. We simply focused on series in the
public domain that on a priori grounds would be expected to be correlated with real economic
activity. Nevertheless, it is possible that by accident we selected a set of predictors that is not
representative and unduly favors the bagging method. To address this concern, in Table 3 we
present the results of a sensitivity analysis. First, we deleted at random 25% of our predictor
set and recomputed the PMSE ratio for the three bagging methods relative to the benchmark
model that only includes lags of inflation. We report median results for 30 such draws including
M = 20 predictors each. Second, we added six more series to the baseline predictor set of M = 26
predictors (representing a 25% increase in the predictor set) and recomputed the PMSE ratio.
The additional variables are listed in the Appendix. With the exception of the ISM index and
the interest rate spread all variables are expressed in percentage changes.

As Table 3 shows, our results for h = 1 are remarkably robust to changes in the data set. For
h = 12, the choice of data set becomes more important. For M = 32, the PMSE ratio relative
to the benchmark model drops to 43 percent for all three bagging methods. For M = 20, the
PMSE ratio rises to 59-62 percent. Even the worst results in Table 3, however, are better than
the best results shown in Table 1. While it is possible that bagging may not perform as well in
other applications, there is no evidence that the results in Table 2 are not representative for the
application considered here.

3.3 Bayesian Shrinkage Estimators

The bagging method also has similarities with shrinkage estimators such as the Stein-type
estimator or the Bayesian shrinkage estimator used by Litterman (1986) in a different context.
Thus, it is natural to compare the accuracy of bagging to that of the shrinkage estimator. A
Bayesian approach is convenient in this context because it allows us to treat the parameters
of the benchmark model differently from the parameters of the real economic indicators. Note
that the use of prior distributions in this context does not reflect subjectively held beliefs, but
simply is a device for controlling the degree of shrinkage. To facilitate the exposition and to
preserve consistency with related studies, in the remainder of the paper we will include at most
one lag of each indicator of real economic activity. The Bayesian shrinkage estimator is applied
to the model:

h R p ~ M  ~
Tirnt =+ Zk:l PkTe—k + ijl BiTj e

We postulate a diffuse Gaussian prior for («, ¢1, ..., ¢,). The prior mean is based on the fitted
values of a regression of inflation on lagged inflation and the intercept over the pre-sample period,
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as proposed by Wright (2003b). In our case, the pre-sample period includes 1947.1-1971.3.
The prior variance is infinity. We use a different prior mean for each combination of h and p
used in the benchmark model. For the remaining parameters we postulate a Gaussian prior
with mean zero and standard deviation A\e{0.01,0.05,0.1, 0.2,0.3,0.4,0.5,1,2,5,100} for the
standardized data. For A = oo, the shrinkage estimator reduces to the least-squares estimator
of the unrestricted model. All prior covariances are set to zero. For further details on the
implementation of this estimator see Liitkepohl (1993, ch. 5.4).

Table 4 shows selected results of the grid search over A. We find that for A = 1 a moderate
degree of shrinkage helps reduce the PMSE. The optimal degree of shrinkage is near A = 0.5; as
A declines further, the PMSE ratio quickly starts deteriorating. The best shrinkage estimator is
slightly more accurate than the bagging estimator at the one-month horizon with a ratio of 81
percent compared with 82-83 percent for bagging, depending on the method chosen. In contrast,
at the one-year horizon, the unrestricted model with a ratio of 70 percent is more accurate than
any shrinkage estimator, and bagging is even more accurate than with a ratio of 56-58 percent.
We conclude that bagging in this application performs almost as well or better than Bayesian
shrinkage estimators, depending on the horizon.

3.4 Bayesian Model Averaging: One Extra Predictor at a Time

Recently, there has been mounting evidence that forecast combination methods are a promising
approach to improving forecast accuracy. For example, Stock and Watson (2003) have shown
that simple methods of forecast combination such as using the median forecast from a large set
of models may effectively reduce the instability of inflation forecasts and lower their prediction
mean-squared errors. In its simplest form, forecast combination methods assign equal weight
to all possible combinations of the benchmark model and one extra predictor at a time. More
recently, Wright (2003b) has shown that the accuracy of forecast combination methods may
be improved upon further by weighting the individual forecast models based on the posterior
probabilities associated with each forecast model. in this subsection, we will expand the list of
competitors of bagging to include Wright’s BMA method. A key difference between our papers
is that Wright imposes one lag of inflation only in the benchmark model, whereas we allow for
potentially more than one lag of inflation. Otherwise our approaches are identical.

As before, for the benchmark model we follow Wright (2003b) in postulating a diffuse
Gaussian prior with the prior mean based on the fitted values of a regression of inflation on
lagged inflation and the intercept over the pre-sample period. For the remaining parameters we
postulate a Gaussian prior with mean zero and a prior standard deviation of ¢e{0,0.01,0.05,0.1,
0.2,0.3,0.4,0.5,1,2,5,100} for the standardized data. Again the prior treats the predictors as
independent. The prior probability for each forecast model is 1/M, as in the equal-weighted
forecast combination. For ¢ = 0, the BMA method of forecast combination reduces to the
equal-weighted method. Table 5a presents selected results of the grid search over ¢.

We find that, as in Wright (2003b), the BMA method is clearly superior to the equal-weighted
forecast combination method. Table 5a also shows the PMSE ratio of the median forecast. This
alternative combination forecast was inferior to both the BMA forecast and the equal-weighted
forecast. The best results for the BMA method at the one-month horizon are achieved with
¢ = 0.1. At the one-year horizon an even tighter prior of ¢ = 0.05 works best. These results are
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of course problem-specific. For example, for Wright’s (2003b) quarterly data set much larger
prior standard deviations appear to work best.

With a ratio of 90 percent the BMA method in our application is more accurate than the
factor model forecast at the one-month horizon, but somewhat less accurate than the three
bagging forecasts. At the one-year horizon, the best BMA forecast with a ratio of 84 percent
is inferior to the factor model forecast and much less accurate than the bagging forecasts. We
conclude that in this application bagging clearly outperforms the BMA method.

3.5 Bayesian Model Averaging: Randomly Chosen Subsets of Extra
Predictors

Papers on forecast combination methods for inflation typically restrict the forecast models under
consideration to include only one indicator of real economic activity at a time. There is no
reason for this approach to be optimal, whether we use equal weights or posterior probability
weights. In fact, a complete Bayesian solution to this problem that provides optimal predictive
ability would involve averaging over all possible forecast model combinations (see Madigan and
Raftery 1994). The problem is that such a systematic comparison of all possible subsets of such
indicators would be computationally prohibitive in realistic situations. In our example, there
are 226 = 67,108, 864 possible combinations of predictors to be considered. In response to this
problem, Raftery, Madigan and Hoeting (1997) proposed an alternative method of BMA for
linear regression models based on a randomly selected subsets of predictors that approximates
the Bayesian solution to searching over all models.® The random selection is based on a Markov
Chain Monte Carlo (MCMC) algorithm that moves through the forecast model space. Unlike
Wright’s method, this algorithm involves simulation of the posterior distribution and is quite
computationally intensive. Our results are based on 5000 draws from the posterior distribution
at each point in time.

MATLAB code for the Raftery et al. algorithm is publicly available at http://www.spatial-
econometrics.com. We modified the Raftery et al. approach to ensure that the benchmark
model including only lags of inflation and the intercept is retained in each random selection.
For the models of the benchmark model we use a diffuse Gaussian prior identical to the priors
used for the Wright (2003b) method. For the remaining parameters of the forecast prior the
algorithm involves a Gaussian prior with mean zero and hyperparameters v = 2.58, A = 0.28, and
¢€{0,0.01,0.05,0.1, 0.2,0.3,0.4,0.5,1, 2, 5,100}, where ¢ measures the prior standard deviation
of the standardized predictor data (see Raftery et al. for further details). We report a subset of
the empirical results in Table 5b. We also experimented with ¢ = 2.85, the value recommended
by Raftery et al. for a generic linear model, but the results were clearly worse than for our
preferred value of ¢ below.

We find that a value of about ¢ = 0.01 works best for h = 1 and ¢ = 0 for h = 12. This
version of BM A produces clearly more accurate results than the restricted version involving only
one extra predictor at a time. Compared to Table 5a, at the one-month horizon the PMSE ratio
for the best BM A predictor falls from 90 percent to 80 percent and at the one-year horizon from

8See Sala-i-Martin, Doppelhofer and Miller (2004) for a similar approach to BMA in a different context. Also see
George and McCulloch (1993) for an alternative stochastic search variable selection algorithm.
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84 percent to 62 percent. Thus, for h = 1, this BMA method is somewhat more accurate than
the best bagging predictor; for h = 12, however, the best bagging predictor promises somewhat
higher accuracy with a ratio of 56 percent.

4 Conclusion

Recently, there has been increased interest in forecasting methods that allow the user to ex-
tract the relevant information from a large set of potentially relevant predictors. One such
method is bootstrap aggregation of forecasts (or bagging for short). Bagging is intended to
reduce the out-of-sample prediction mean-squared error of forecast models selected by unsta-
ble decision rules such as pre-tests. This article explored the usefulness of bagging methods
in forecasting economic time series. We first described how to implement the bagging idea in
the context of multiple regression models with possibly serially correlated and heteroskedastic
errors. We discussed three different algorithms for implementing the bagging idea: two based
on the correlated regressor model and one based on the factor model. Using asymptotic theory
and empirical evidence we showed that bagging, while no panacea, is a promising alternative to
existing forecasting methods in many cases.

Whether bagging is likely to improve out-of-sample forecast accuracy in a given application
may be assessed based on a simulated out-of-sample forecast exercise. For illustrative purposes,
we considered the widely studied question of whether the inclusion of indicators of real economic
activity lowers the prediction mean-squared error of forecast models of U.S. CPI inflation. Over a
twenty-year period, we compared the accuracy of simulated out-of-sample forecasts based on the
bagging method to that of alternative forecast methods for U.S. inflation, including forecasts
from a benchmark model that includes only lags of inflation, forecasts from the unrestricted
model that includes all potentially relevant predictors, forecasts from models with a subset of
these predictors selected by pre-tests, forecasts from estimated factor models, forecasts from
models estimated by shrinkage estimators, standard combination forecasts and finally forecasts
obtained by state-of-the-art methods of Bayesian model averaging.

We found that all three bagging methods under consideration greatly reduce the prediction
mean squared error of forecasts of U.S. CPI inflation at horizons of one month and one year
relative to the unrestricted, fully restricted and pre-test model forecasts. Bagging forecasts in
this application also were more accurate than forecasts from estimated factor models. Particu-
larly striking were the improvements from applying bagging to a larger subset of the estimated
factors relative to forecasts from a small fixed number of factors. We showed that the superior
performance of bagging methods in this application is robust to alterations of the data set and
we addressed the important practical question of how to choose an appropriate critical value for
the bagging method.

We also compared bagging methods to other methods of forecast combination. Bagging
performed better than equal-weighted or median forecasts. In addition, in this application,
bagging performed better than the method of Bayesian model averaging recently proposed by
Wright (2003b), and - depending on the horizon - almost as well as or somewhat better than
forecasts based on Bayesian shrinkage estimators or on the method of Bayesian model averaging
proposed by Raftery et al. (1997).
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Our analysis demonstrated that significant improvements in forecasting accuracy can be
obtained over existing methods, and we illustrated how researchers can determine whether such
gains are likely in a given application. We provided an empirical example in which bagging
achieved substantial gains in forecasting accuracy. Whether bagging will perform equally well in
other applications is an open question that calls for more research. For example, our asymptotic
analysis of a stylized regression model suggests that bagging may not work well when the
regressors are highly correlated. Our asymptotic analysis also suggested that, regardless of the
bagging method adopted, bagging is unlikely to work as well when the degree of predictability
is very low, as would be the case in forecasting asset returns, for example. More research is
needed before bagging can be considered a standard tool for applied forecasters using multiple
linear regression models.

We also note that the analysis of bagging presented in this paper assumes a covariance
stationary environment and abstracts from the possibility of structural change. The same is
true of the standard theory of forecast combination, which relies on information pooling in a
stationary environment. An interesting avenue for future research would be the development of
bagging methods that allow for smooth structural change. Another interesting avenue for future
research will be to compare the properties of the bagging predictor in the factor model to factor
model forecasts based on a small fixed number of factors, when the cross-sectional dimension is
relatively large.
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Appendix

Proof of Propositions 1, 2 and 3. It follows from applications of the law of large numbers and
the central limit theorem that

TV ) 5 ¢,

TGP (@) % € B(wal)S [SE(way) ST Se1(1g] > ey/o?[(Baiy) ;5 for some j),
TV25CPT (5 4 §§8EI(3 j st |§] > co),

TP @) S B B(way)S” S Blaat) ST ]IS R 1(18] > ey/o? (Blwiay)) 1] 5 for some 5)|¢,
TGP E) S B{E"SYSRI(I€]| > co for some j)[¢},

and

Tl/QgUR(x) 4, 'z,
TY25PT (1) <, &'S'SzI(|¢;] > co for some j),
TV258Az) & B{e"SY S xI(|€}] > co for some 5)|¢).

Thus, Propositions 1 and 2 follow. Proposition 3 can be proved analogously to Proposition 2
with suitable changes in notation.
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Data Sources

All data are for the United States. The sample period for the raw data is 1971.4-2003.7.
This choice is dictated by data constraints. The data are from the Federal Reserve Board
and the database of the Federal Reserve Bank of St. Louis (FRED). They are available at

http://www.economagic.com:

INDPRO industrial production
HOUST housing starts

HSN1F house sales

NAPM purchasing managers index
HELPWANT help wanted index

TCU capacity utilization
UNRATE unemployment rate
PAYEMS nonfarm payroll employment
CIVPART civilian participation rate
AWHI aggregate weekly hours, private nonfarm payrolls
MORTG mortgage rate

MPRIME prime rate

CD1IM 1-month CD rate
FEDFUND Federal funds rate

M1SL M1

M2SL M2

M3SL M3

BUSLOANS  business loans
CONSUMER consumer loans
REALN real estate loans

DM/USD rate

EXGEUS (extrapolated using the Euro/USD rate)
EXJPUS Yen/USD rate

EXCAUS Canadian Dollar/USD rate

EXUSUK USD/British Pound rate

OILPRICFE WTI crude oil spot price

TRSP500 SP500 stock returns

The additional data used in the sensitivity analysis are:

NAPM
TOTASS_AUSA
TCM20Y —TBSM3M
UEMP150V
UEMPLTS
AWHNONAG

ISM index of manufacturing activity

total number of motor vehicle assemblies

spread of 10-year T-bond rate over 3-month T-bill rate
number of civilians unemployed for more than 15 weeks
number of civilians unemployed for less than 5 weeks
average weekly hours, private nonagricultural establishments
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Table 1a. Out-of-Sample Forecast Accuracy:

U.S. Inflation Forecasts: 1 Month Ahead
Evaluation Period: 1983.8-2003.7

Models with Indicators of Economic Activity

PMSE Relative to Benchmark at h=1

Lags of FM

Indicators UR PT CPT PTY rank1l rank2 rank3 rank4
1 0.885 0.899 0.896 0.937 0.985 0.991 1.036 0.978

2 1.168  0.925 0.993 1.104 0.969 0.983 1.049 1.021

3 1.668  1.017 - 1.086 0.984 1.000 1.055 1.049

4 - - - - 0.990 1.013 1.094 1.089

5 - - - - 0.993 1.019 1.123 1.142

6 - - - - 0.998 1.012 1.168 1.185
SIC 0.885 0.899 0.896  0.937 0.984 1.014 1.135 1.066

Table 1b. Out-of-Sample Forecast Accuracy:
U.S. Inflation Forecasts: 12 Months Ahead
Evaluation Period: 1983.8-2003.7
Models with Indicators of Economic Activity
PMSE Relative to Benchmark at h=12
Lags of FM

Indicators UR PT CPT PTY rank1l rank?2 rank3 rank4

1 0.695 1.190 0.860 0.820 0.720 0.739 0.785 0.731

2 0.838 1.046 - 1.045 0.674 0.691 0.746 0.704

3 1.207 1.061 - 0.997 0.668 0.685 0.755 0.743

4 - - - - 0.673 0.687 0.774 0.790

5 - - - - 0.686 0.703 0.784 0.829

6 - - - - 0.708 0.732 0.803 0.884

SIC 0.695 1.190 0.867 0.907 0.776 0.700 0.738 0.830

SOURCE: The sample period of the raw data is 1971.4-2003.7. The PMSE is based
on the average of the squared recursive forecasts errors. The pre-test forecasts are all
based on ¢ =1.96. The pre-test results for other values of ¢ are qualitatively similar.
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Table 2. Out-of-Sample Forecast Accuracy:
U.S. Inflation Forecasts: 1 Month and 12 Months Ahead
Evaluation Period: 1983.8-2003.7

Alternative Bagging Predictors with Critical Value c

PMSE Relative to Benchmark
c=2575 ¢=2241 ¢=196 c¢=1645 ¢c=1440 c=1282 ¢=0.675

h=1 BA 0.835 0.834 0.833 0.839 0.844 0.854 0.860
CBA  0.817 0.828 0.835 0.841 0.845 0.847 0.857
BAF 0.828 0.832 0.841 0.847 0.851 0.854 0.861
h=12 BA 0.617 0.597 0.582 0.587 0.590 0.591 0.606
CBA  0.555 0.557 0.562 0.574 0.587 0.594 0.610
BAF 0.567 0.578 0.588 0.600 0.605 0.608 0.614

SOURCE: See Table 1. All results based on one lag of the extra predictors only.
For h =1, all pre-tests are based on White (1980) robust standard errors. The bagging
results are based on the pairwise bootstrap. For h = 12, all pre-tests are based on West
(1997) robust standard errors. The bagging results are based on blocks of length m = 12.

Table 3. Out-of-Sample Forecast Accuracy:
U.S. Inflation Forecasts: 1 Month and 12 Months Ahead
Evaluation Period: 1983.8-2003.7

Sensitivity of Performance of Bagging Predictors to M

PMSE Relative to Benchmark

-25%* Baseline Data Set +25%
M =20 M = 26 M =32

h=1 BA 0.812 0.833 0.826
CBA 0.803 0.817 0.836

BAF 0.821 0.828 0.847

h=12 BA 0.621 0.582 0.430

CBA 0.592 0.555 0.432

BAF 0.601 0.567 0.426

SOURCE: See Table 2. All results based on optimal value of ¢ in Table 2. * Median
result based on 30 random draws of 20 predictors from baseline predictor set.
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Table 4. Out-of-Sample Forecast Accuracy:
U.S. Inflation Forecasts: 1 Month and 12 Months Ahead
Evaluation Period: 1983.8-2003.7

Shrinkage Estimator of Unrestricted Model
PMSE Relative to Benchmark
Bayesian shrinkage estimator UR CBA
A=05 A=1 AX=2 A=5 A=100 A= c=2.575
h=1 0.809 0.826 0.843 0.865 0.885 0.885 0.817
h=12 0.710 0.703 0.696 0.695 0.695  0.695 0.555

SOURCE: See Table 1.

Table 5. Out-of-Sample Forecast Accuracy:
U.S. Inflation Forecasts: 1 Month and 12 Months Ahead
Evaluation Period: 1983.8-2003.7

(a) Bayesian Model Averaging: One Extra Predictor at a Time
PMSE Relative to Benchmark
Median  Equal- BMA CBA
weighted
¢=0 ¢6=001 ¢=005 ¢=01 ¢=02 ¢=03 c=2575
h=1 0.993 0.974 0.970 0.910 0.904 0.915 0.919 0.817
h =12 0.947 0.871 0.852 0.843 0.885 0.948 0.958 0.555
(b) Bayesian Model Averaging: Random Sets of Extra Predictors
PMSE Relative to Benchmark
Equal- BMA CBA
weighted

p=0 ¢=001 ¢=005 ¢=01 ¢=02 ¢=05 ¢=1 ¢=2 c=2575

h=1 0.820 0.804 0.817 0.819 0.827 0.828 0.832 0.839 0.817
h =12 0.622 0.643 0.676 0.681 0.666 0.656  0.645 0.646 0.555

SOURCE: See Table 1.
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Figure 1: Asymptotic Properties of PT and BA Predictors in Single-Regressor Model
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NOTES: PT=Pre-test predictor. BA=Bagging predictor.
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Figure 2: APMSE of Alternative Predictors in Single-Regressor Model

APMSE

NOTES: PT=Pre-test predictor. BA=Bagging predictor. UR=Unrestricted predic-
tor. FR=Fully restricted predictor
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Figure 3: APMSE Gains of the BA Predictor Relative to the PT Predictor in Correlated Regressor

Model
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Figure 4: APMSE Gains of the BA Predictor Relative to Best Alternative Predictor in Correlated

Regressor Model
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Figure 5: APMSE Gains of CBA Predictor Relative to Best Alternative Predictor in Correlated

Regressor Model
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