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ABSTRACT

Preliminary Data and Econometric Forecasting:
An Application with the Bank of Italy Quarterly Model*

This Paper considers forecasting by econometric and time series models
using preliminary (or provisional) data. The standard practice is to ignore the
distinction between provisional and final data. We call the forecasts that ignore
such a distinction naive forecasts, which are generated as projections from a
correctly specified model using the most recent estimates of the unobserved
final figures. It is first shown that in dynamic models a multistep-ahead naive
forecast can achieve a lower mean square error than a single-step-ahead one,
intuitively because it is less affected by the measurement noise embedded in
the preliminary observations. The best forecasts are obtained by combining, in
an optimal way, the information provided by the model with the new
information contained in the preliminary data. This can be done in the state
space framework, as suggested in nhumerous papers. Here we consider two
simple methods to combine, in general sub-optimally, the two sources of
information: modifying the forecast initial conditions via standard regressions
and using intercept corrections. The issues are explored with reference to the
Italian national accounts data and the Bank of Italy Quarterly Econometric
Model. A series of simulation experiments with the model show that these
methods are quite effective in reducing the extra volatility of prediction due to
the use of preliminary data.
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1. Introduction

The quality of a forecast depends greatly on the quality of the data on which it
is based. As the initial conditions play a fundamental role in the evolution of
a dynamic system (the econometric model), it is clear that accurate forecasting
requires, among else, reliable data.

Macroeconomic data, as produced by the statistical agencies, are routinely
revised for a number of periods. Preliminary estimates are often available soon
after the end of the period to which they refer; these estimates, however, may
contain a great deal of noise and may differ considerably from the definitive fig-
ures. Macroeconomic forecasts are therefore potentially strongly affected by the
presence of preliminary (or provisional) data. Numerous studies have analyzed
the size of the revision errors in economic data, e.g. Zellner (1958), Cole (1969),
Mankiw and Shapiro (1986) for US GNP, Di Fonzo et al. (1995) for Italian na-
tional accounts data. Gallo and Marcellino (1999) and Patterson (2000) have also
suggested combining final and provisional data in a unified statistical framework,
a vector error correction model & la Johansen (1995).

The purpose of this paper is to try and assess the impact of data revisions on
econometric forecasts, and suggest alternative ways to avoid the amplification of
prediction errors due to preliminary data.

The standard practice is to ignore the distinction between provisional and final
data. We call the forecasts that ignore such a distinction naive forecasts, which
are generated as projections from a correctly specified model using the most recent
estimates (the preliminary data) of the unobserved final figures. We first show
that, in dynamic models, a multistep-ahead naive forecast can achieve a lower
mean square error than a single-step-ahead one. The intuitive reason is that it is
less affected by the measurement noise embedded in the preliminary estimates.

Only by taking the measurement noise explicitly into account, can efficient
forecasts be obtained. In particular, state space techniques and the Kalman filter



permit extracting the information contained in the latest released data in an
optimal way and obtaining mininum mean square error forecasts. This approach
has been taken in Howrey (1978, 1984), Conrad and Corrado (1979), Harvey et al.
(1983), Bordignon and Trivellato (1989), Patterson (1995a,b) and Mariano and
Tanizaki (1995), the latter extending the basic construct to the case of nonlinear
non Gaussian observations. A simultaneous-equations framework has instead been
used by Trivellato and Rettore (1986) to investigate the effects of preliminary data
on model estimation and one-step-ahead forecasts.

However, the optimal filtering techniques are not well-suited to large-scale
structural econometric models, mainly because these models cannot be easily cast
in state space form. We therefore suggest two simpler methods of reducing the
impact of the noise in the provisional data: modifying the initial conditions of the
forecasts by weighting the preliminary observations with the model predictions
and using intercept corrections, i.e. adjustments to the constant term of certain
equations of the model.

The first of these methods amounts to regressing the final on the preliminary
data and the model’s in-sample predictions and using the regression coefficients
(weights) to obtain what we may call weighted preliminary data; these, in turn,
will be our initial conditions for producing out-of-sample forecasts. Note that if
we regard a preliminary observation as a forecast of the unobserved true value,
our proposal of weighting the provisional data closely resembles the proposal of
forecast combination advanced in Bates and Granger (1969).

The second method, on the other hand, follows an idea originally formulated
in Hendry and Clements (1994), where it is argued that intecept corrections can
be viewed, among other things, as a device for reducing the effects of data mea-
surement errors on model predictions.

In this paper, simulations run on the Bank of Ttaly Quarterly Model (BIQM), a
large scale structural model containing 96 behavioural equations, are used to show
that both methods appear to be highly effective in reducing the extra volatility
of predictions due to the utilization of provisional data.

A practical implication of this study is that in many cases it may be wise
to underweight the impact of the latest data on the predictions over the future
developments of the economy. While it is clear that most professional forecasters
regard preliminary data in the right way, i.e. as estimates subject to a degree of
error, this is not necessarily the case for the final users of the forecasts, policy
makers and market operators, who tend to view the most recently released figures
as the best indicators of future trends. Here, instead, we show that factoring in



all the data on the current state of the economy may be a significant source of
prediction error.

One issue not pursued in this paper is the effect of provisional data on the
estimated coefficients, that is it is implicitly assumed that the model parameters
are the population ones. Among other things, this simplifies the expression for
the mean square error of forecasts by removing the contribution attributable to
parameter uncertainty. If the model is correctly specified, the effect on the coeffi-
cients is likely to be negligible, because the most recent (noisy) observations are
usually not included in the estimation sample but serve for diagnostic checking
of the model. In any case, that issue is thoroughly analysed by Trivellato and
Rettore (1986).

In summary, the paper proceeds as follows. Section 2 sets out the framework
for analyzing the impact of preliminary observations on forecasts. Section 3 shows
that if the distinction between provisional and final data is ignored multistep-
ahead can be more efficient than one-step ahead forecasts. This occurs when
the noise of the provisional data is relatively large with respect to the error in
the model equations. Section 4 considers the Italian quarterly national accounts,
as produced by the National Statistical Agency (ISTAT), and the Bank of Ttaly
Quarterly Model. We find that the measurement error in the preliminary vintages
of data is comparable to the prediction error from the model: by the arguments of
the previous sections it follows that the effect on forecasting performance may be
substantial. The optimal filtering techniques suggested in much of the literature
are reviewed in Section 5, while the suboptimal approach of modifying the fore-
cast initial conditions by weighting the preliminary observations with the model
predictions is proposed in Section 6: it is shown that for a simple AR(1) model
with noise the two methods are equivalent. The use of intercept corrections as
means to mitigate the noise embedded in the preliminary data is advanced in
Section 7, where the optimal correction is obtained for the same AR(1) plus noise
model. Finally, Section 8 reports the results of a series of simulation experiments
with the BIQM, comparing the forecast performance of the model across four
scenarios: final data, preliminary data, modified initial conditions and intercept
corrections. It is shown that the deterioration in the forecasting performance
due to preliminary data is greatly reduced if our suggested methods are used.
Concluding remarks are given in Section 9.



2. The framework

Let x; be a n x 1 vector time series observed with a delay of d + 1 periods, and
denote by y; ; the i —th preliminary observation of x;, i = 1, ..., d. We assume that
Vi is available at time ¢ + ¢, i.e. that a first estimate of x; is available at time
t + 1 and this estimate is revised each subsequent period. This approximately
corresponds to the case of Italian quarterly national accounts; see Di Fonzo et al.
(1995) for details.

Except for the case d = 1, it turns out that we have multiple preliminary data,
or wvintages, for each true value of the variable of interest. In particular, at time
t + 1 we have the d(d + 1)/2 preliminary values y;1, Yi—12, Yi—1.1, - Yt—d+1,1;
however, the new information is given by only the latest vintage of data.

Denote by Y¢ = (¥i1,¥; 12 Yt ar1.4) the nd dimensional vector of most
recent preliminary observations, as resulting from the latest vintage. Following
Howrey (1978) and Harvey et al. (1983), we can write the following model for the
data,

Y; =c+ AX; + &, (2.1)

where ¢ = (c}, ..., ;) is a vector of bias, A =diag(Ay, ..., A,) is a nd x nd matrix
made of n x n nonzero diagonal blocks, X; = (x},x} ;,....,X; 4.1) and & =
(€1.1,€ 12> -+ Et—a+1,4)" is the vector of measurement errors, which in general can
be characterized by some time series model, e.g. an AR(1) in Howrey (1978). For
example, with d = 2 (2.1) becomes

Yi1 Ci A, 0O X €41
’ = + + ’ :
( Yi-1,2 ) ( Ca ) ( 0 A, ) ( Xi—1 ) ( €i—1,2 )
For the time being, we assume that x; follows a vector AR(p) process,

®,x_, + uy, (2.2)

p
Xt =
s=1

where wu; is #4d(0,€2) and the roots of the matrix polynomial I — >F_, ®,L are
outside the unit circle; more general processes for x; are considered in Section 5.
If x; were observed, its best linear j-step ahead forecast could be written as

Koo =2 Wx, o j=12,.. (2.3)
s=0



where WU) are appropriate weights that can be computed recursively (over j)
starting with W) = ®,,,, s =0,1,....,p — 1, and W) =0, s > p. Correspond-
ingly, the forecast mean square error is known to be
J
F(j) = MSE(X i) = U, QP j=12 . (2.4)
1

h=

where W, Wy, ... are the coefficients of the moving average representation of the
process (2.2); see e.g. Hamilton (1994, page 78).

More generally, if x; has a state space representation (which for example in-
cludes the cases of ARIMA models and regressions with time varying coefficients)
F(j) can be obtained from the Kalman filter recursions and a weight forecasting
formula analogous to (2.3) from the results of Koopman and Harvey (1999); see
Section 5.

3. Naive multistep-ahead forecasts

We call naive forecasts of x; those that ignore the distinction between provisional
and final data, i.e. that are constructed on the basis of model (2.2) but using the
most recent preliminary observations of the unobserved true values. From (2.3),
the naive j-step-ahead forecast, denoted as x%, s can then be written as

d—1 00
X =2 Wy o +> WP, j=1.2,.. (3.1)
s=0

s=d

Consider first the important case of c = 0, A = I,,4, which corresponds to unbiased
preliminary observations, in the sense that they are unbiased estimates of the true
values. In this situation, (3.1) can be rewritten as

d—1 ~
thv-i-j‘t = Z W.gj) (Xt—s + €t—s,s+1) + Z ng)xt_s
5=0 s=d
d—1 '
= Xyt + Z Wg])gt_s’s_i'_l.
5=0

The mean square error of the naive forecast is then

Fn(j) = MSE (x),) =F(G) +GG),  §=1,2,.., (3.2)
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where F(j) is given by (2.4) and

d-1d-1 _
G(j) = Z Z WYE (5t78,5+1€27h,h+1) WEL])/-
s=0 h=0

It is shown in Appendix A that G(j + 1) — G(j) is a negative semidefinite
matrix for all j = 1,2,.... As F(j + 1) — F(j) is clearly positive semidefinite, we
may have regions where the mean square error of the naive forecast is decreasing
as the forecast horizon grows; for example it can happen a 2-step ahead forecast
is better, in the MSE sense, than a 1-step ahead. This is likely to occur when the
prediction variance of the model is small relative to the variance of the preliminary
data; intuitively, a multistep-ahead naive forecast can be more attractive than a
single-step-ahead one, as it is based on more reliable observations.

EXAMPLE: AR(1)+NOISE, d=1. Let x, follow a univariate AR(1) process
with parameter ¢ and suppose that d = 1, A =1 and that &;; is serially un-

correlated with variance o2. As W(()j) = ¢/ and WU = 0 for s # 0, we have

Fn(j) = 0230, ¢* "V + ¢%52, where o2 is the variance of u,. Thus a 2-

u

step-ahead forecast is better (in the MSE sense) than 1-step-ahead, provided
02 < (1—¢*o2. !

For general ¢ and A, the naive forecast MSE can be written as
Fy(j) = MSE(x7, ) =F() +G*(5), =12,

where F(j) is as before and G*(j 4+ 1) — G*(j) is a negative semidefinite matrix;
see the appendix. Then similar arguments on the behaviour of the forecast mean
square error apply.>

4. Revision errors and forecasting errors of the BIQM

We have seen that when the prediction variance of the model is small enough, pro-
jecting the model into the future can be better than running it using preliminary

! This result also appears in Harrison et al. (2003).

2 Analogous considerations apply also when the data generating process for x; is a cointegrated
VAR of order p: by writing the error correction representation with the disequilibrium term
lagged p times instead of the usual representation with one lag, it is clear that for large enough
p the impact of preliminary data on that term is negligible and thus the additional component
in the mean square error of the naive forecast is given by the matrix G*(j) above.
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data. Here we consider the Bank of Ttaly Quarterly Econometric Model (BIQM)
and the quartely national accounts produced by the national statistical agency
(ISTAT). The aim is to measure and compare the magnitude of the errors in the
preliminary observations and the forecast mean square error of the econometric
model per se, i.e. when it is run using the definitive data.

The revision process for the Italian quarterly national accounts is thoroughly
described in Di Fonzo et al. (1995). In brief, the first estimate for any given
quarter is continuously revised for the following three years. In addition, there
are occasionally other revisions, say, taking into account data from decennial
censuses or improved estimation procedures or changes in the base-year. A major
break in the national accounts statistics occurred with the change, in 1999, from
the ESA79 to the ESA95 accounting scheme (cf. Eurostat, 1999). As the series
following the two schemes are not directly comparable, we have chosen in this
paper to use only on the ESA79 data, for which many more observations are
available; likewise we do not consider the recently introduced ”flash estimates” of
Italian real GDP.

Denote by t.q the data vintage that includes the first preliminary observation
for quarter g of year t. We consider 35 data vintages, or releases, corresponding to
the available data sets between 1988.2 and 1998.3, the latter being the last issued
that follows the ESAT9 accounting scheme.

As in the previous sections, we denote by y;; the i-th preliminar observation
for x;, or more precisely the observation of x; available at time t 4 ¢, and let
e, = Yii — X be the corresponding release error.

To compute the release error we take as true value x; the observation y; 12 (y+.13
if y; 12 corresponds to a vintage that is not available), reflecting the fact that the
normal revision process should be terminated after 12 quarters. In principle, one
could use the last available observation, i.e. the figure from the vintage 1998.3;
however, as noted above, extra revisions in the data do take place occasionally,
which implies that the data keep changing even after many years. As an example,
Table 1 contains the first 12 vintages for the percentage growth rate of real GDP
together with the last available observation®. Our view is that, if the goal is to
obtain some measure of the noise in the preliminary data, considering the last
observation is likely to introduce extra variability. The data for 1989Q4 are a
clear example: while the figures of the first 11 releases do not fluctuate much
around y; 12 = 0.545, the value 1.209 obtained from the vintage 1998.3 is much
greater. In any case the results reported in Table 2 below do not change much

3The blanks in Table 1 correspond to the vintages that are not available.



when the data from 1998.3 are used as true values.

Table 2 computes mean, standard deviation and root mean square of the re-
lease errors e;;, © = 1,2,...,11, for the percentage growth rates of the following
series in real terms: Gross Domestic Product (GDP), Final Domestic Consump-
tion (CON), Gross Fixed Capital Formation (INV), Exports of Goods and Services
(EXP), Imports of Goods and Services (IMP). The last row of the Table reports
the number of observations used to compute those statistics; the time span is from
the period 1985Q1 to 1995Q)4. Note that, by considering percentage growth rates
we avoid the problem of data deflated with respect to different base years.

The table indicates that the preliminary observations are approximately un-
biased estimators of the true values. As expected, later revisions are, in general,
better estimates. A similar exercise was carried out by Di Fonzo et al. (1995, Ta-
ble 7), using datasets between 1984.4 and 1994.2, with analogous results, except
for the investment series which appears noisier in our data.

The figures of Table 2 are broadly in line with those for the other industrialized
countries. Faust et al. (2001) analyze the average magnitude of the revisions in
the first vintage of real GDP across the G7 countries. For the period 1988-1997
they obtain a value of 0.52 for the root mean square error of Italian GDP, very
close to our figure of 0.49, obtained from Table 2. From that study it emerges
that the average error for Italy turns out to be larger than those for US, Canada
and France, but significantly smaller than for Germany, Japan and the UK.

The correlation between release errors, corr(es;, e:p), is shown in Table 3 for
the growth rate of real GDP, i, h = 1,2...,11. The table suggests that successive
revisions are positively correlated, which implies that the revision pattern tends
to be monotone; on this point see Di Fonzo et al. (1995). The corresponding
matrices for the other series are not reported, as the correlation pattern is not
qualitatively different from that of GDP.

A formal test of unbiasedness for the i-th release can be obtained from the
regressions

Vii = By + B1x¢ + error, (4.1)

by testing the null hypothesis Hy : 3, = 0, 3, = 1. The results for this sequence
of F-tests, for i = 1,2,...,8, are displayed in Table 4 for the percentage growth
rates of each of the five series analyzed in this study®.

4This is sometimes called the Mincer-Zarnowitz test of forecast rationality. The regressions
are done by Ordinary Least Squares; standard procedures to correct for serial correlation in
the residuals will not work, as the sample contains missing observations corresponding to the
vintages that are not available. Indeed, Gallo and Marcellino (1999) make the point that, if



It emerges that the preliminary data for exports, imports and GDP appear
to be unbiased, unlike the data for consumption and investments. The fit of
the regression, as measured by the R? and the standard error of regression, is
essentially increasing with ¢, confirming that later releases are more reliable, as
from Table 2. As expected, there appears to be a trade-off between the volatility
of the preliminary observations and the absence of the bias: for each series, except
consumption, lower R? essentially correspond to higher p-values for the F-test.

We then compute the forecast errors associated with the Bank of Italy Quar-
terly Model (BIQM), which, following the framework of Section 3, we want to
compare to the errors in the provisional data. The BIQM is a large scale struc-
tural model which, in the latest version estimated on the ESA79 data, contains
96 behavioural equations, 885 endogenous and 663 exogenous variables, and a few
nonlinearities. A complete description of an older version of the model with the
same basic structure is given in Banca d’Italia (1986).

The model has been simulated sequentially with starting points ranging from
1985Q1 to 1994Q4, and the empirical (in-sample) forecast errors for the variables
examined, both in logarithms and in first differences of the logarithms, have been
calculated; the summary statistics are displayed in Table 5. The data used for both
estimation and simulation of the model corresponds to the final release 1998.3;
most equations of the BIQM are estimated using observations up to 1996Q4. Note
that bias, standard deviation and root mean square error of the forecasts have
been computed using a number of observations equal to 40 in all cases.

It emerges from Table 5 that the one-step-ahead forecast error is approximately
of the same size as the error of the first vintage of data (taken from Table 2), except
for the series of imports where it is larger in the model. For the (log) levels of
the series the magnitude of the forecast error increases steadily with the forecast
horizon, as expected, while for the percentage growth rates it essentially reaches an
upper bound after a few steps of predictions. The fact that the empirical forecast
root mean square error for the growth rates is not monotonic can be justified on
many grounds, e.g. parameter variation, small sample size, misspecification; see

there is cointegration between provisional and final data, one should consider the augmented
regression
Yti = Bo + b1t + Baze—1 + error,

where y;; and x; are first differences (of the logarithms) and z;_; is an error correction term.
As the focus of this paper is not on the cointegration properties among the various vintages of
data, we do not pursue that approach. Some work in this direction is contained in Di Fonzo et
al. (1995).
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e.g. Klein (1983, p. 88).

Ideally one would like to compare the noise in preliminary data with the errors
of ex ante rather than in-sample forecasts. Ex ante forecasts, however, are not
necessarily worse: in actual practice, in fact, they are also based on information
that cannot be incorporated into an econometric model. This extra information
can be provided, for example, by leading indicators, ”bridge models” a la Parigi
and Schitzler (1995), knowledge of the occurence of institutional changes, and so
on.

As an example, the following table gives the root mean square error of the
ex ante one-step-ahead forecast for annual growth rates. The statistics have been
obtained by comparing the actual projections made at Bank of Italy around April-
May of each year in the period 1986-1995 with the final values of the series taken
from release 1998.3. Note that at the time in which the forecasts were made,
they were based on national accounts data up to the last quarter of the previous
year; in this sense they are annual one-step-ahead forecasts. Clearly, unlike Table
5, the figures of this table are not not free of the noise arising from the use of
provisional data. The table also provides the root mean square error of the in-
sample forecasts from the BIQM for the same annual growth rates, when the
model is simulated using the final data vintage 1998.3; clearly these are obtained
using the true values, as opposed to some projection, of the exogenous variables
of the model. As discussed above, it turns out that, except for investment, the
magnitude of the ex ante forecast errors is not much greater than that of the in
sample errors’.

Ex ante In sample
GDP 0.74 0.55
CON 0.86 0.63
INV 3.39 1.20
EXP 2.84 2.14
IMP 3.51 2.39

Overall, the empirical findings on the revision errors and the properties of the
BIQM suggest, using the framework of Section 3, that the noise in the data is

®Note also that the ex ante forecasts for 1992-1993 are strongly affected by the deep deval-
uation of the Italian Lira in September 1992 and consequent exit from the European Monetary
System.
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likely to worsen forecasting performance, and could even make one-step-ahead
forecasts less attractive than multistep-ahead forecasts.

Following the articles by Howrey (1978) and Harvey et al. (1983) among
others, the optimal way to proceed would be to combine, in an efficient way, the
forecasts from the econometric model with the new information embedded in the
current and past vintages of data, or in other words to filter out the noise in the
data. That approach is reviewed in the following section; the theoretical efficiency
gain with respect to the naive forecasts of Section 3 is computed for the simple
AR(1) plus noise model.

5. Optimal forecasts

It is known that for a state space model with Gaussian innovations the Kalman
filter provides the minimum mean square error predictor; in absence of Gaussianity
the forecasts provided by the Kalman filter are optimal only within the class
of linear predictors; see e.g. Anderson and Moore (1979), Harvey (1989) and
Koopman et al. (1998).

Consider the following state space representation for a (vector) time series, x;:

x; = by+ Zio; + Gug, (5.1)
a1 = d;+ Ty + Hyug, (5.2)
a; ~ N(a,P), (5.3)
u, ~ NID(0,I), (5.4)

where NI D(p, ¥) indicates a normally identically distributed variable with mean
p and variance ¥ and, similarly, N(.,.) a normally distributed variable. In brief,
the observable time series x; is related to the innovations u; via a measurement
equation (5.1) and a Markovian transition equation (5.2); oy is the unobservable
state vector, which has some initial condition (5.3). The matrices Z;, G, T;, H;
and the vectors by, d; are deterministic; see Harvey (1989, Chapter 3) for details.
The representation (5.1)-(5.4) is general enough to include the most commonly
used time series and econometric models, such as ARIMA models, dynamic linear
regressions, time varying regressions and unobserved component models.
Optimal predictions in the model (5.1)-(5.4) are obtained through the Kalman
filter. Let a;y1 = E(oay1]1i), Pii1 = Cov(oyyq| L), where I, is the information
set given by the observations up to time ¢: I; = {x;,%x;_1, ...} . The Kalman filter
is a recursive algorithm for the evaluation of a; and P;. It is given by the following

12



sets of recursions
vi = Xy — by — Zysay,
F, = Z,P.Z, + GG},
K, = (T.P.Z,+H,G)F,",
a1 = dy+ Tia + Kyvy,
P,., = T,P,T,+HH, - K,FK], (5.

where a; = a, P; = P. In the previous formulae, v; is the innovation, or prediction
error, with zero mean and variance equal to F;, and K, is the so-called ” Kalman
gain”.

The optimal j-step-ahead forecast X, = F(x4;|I;) is then

Xipjlt = Bogj + Leasy i, (5.10)

where a,j; = E(oayy|I;). Note that a;qy = aiq and, for j > 2, a;j, is
obtained from (5.8) setting the gain K;;;_1 equal to zero. Similarly, setting the
gain to zero for j > 2 in (5.9), one also obtains P, = Var(ay,;|I;), and the
forecast mean square error for X, ;, thus becomes

F(j) = Zt+JPt+J\tZt+g + Gt-‘rJG:f-‘r] (5.11)

Compare (5.10)-(5.11) with the corresponding formulae (2.3)-(2.4) for an AR(p)
model. Indeed, Koopman and Harvey (1999) obtain a weighting formula analo-
gous to (2.3) valid for any state space model, thus allowing a weight interpretation
of the forecasts that can be applied in all generality.

Consider now the measurement error setup of Section 2, where the process
generating the true values x; (observable only after d 4+ 1 periods) can be put
in a state space form like (5.1)-(5.4) above. Harvey et al. (1983) show how to
construct the state space representation for the augmented model made up of
the true values x;, the preliminary data Y; and the release errors €; as defined
in Section 2; if x; is an autoregressive process the representation follows almost
immediately (see the example below). Then, applying the formulae (5.5)-(5.9)
to the augmented state space form, one can compute the optimal forecasts for
X;, which take into account the noise embedded in the preliminary data, and the
resulting (minimum) forecast mean square error.

EXAMPLE: AR(1)+NOISE, d=1. The augmented state space form of the
univariate AR(1) plus noise model with ¢ =0, A =1, d = 1 is the following;:

Yt B 10 o. 0 €
() = (6 ) (T 0)(2)
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. ¢ 0 + 0 Oy E¢
@t = 1o/ oo w |’
where a; = (x4, x¢-1), a; = (0, 0) and

o (1 ¢
P1:1—¢2<¢ 1)'

Using (5.5)-(5.9), it is not difficult to show that, for j = 1,2, ...

Y

* ] 0-2 O'g
E(xey|If) = ¢/ ( 21 o 2}"tl +¢ o2+ O_ZX,:1> ; (5.12)
2
* o, ;
MSE (x4 I}) = o, Z gV Tt 006V, (5.13)

where I} is the information set {y1,X¢—1,¥¢-12,Xt—2,...}. The gain with respect
to the naive forecast of Section 3 is then determined by the factor o2 /(02 +
02). Note that (5.13) is an increasing function of o2, the upper bound being, for

ag — 00, the mean square error of the j + 1- step—ahead forecast from the model,

MSE (E(%t1j41| L)) -

For the AR(1)+NOISE example above, the same result of optimal prediction
can be obtained by modifying the initial conditions in the naive forecasting for-
mula (3.1) by weighting the preliminary observations with the model forecasts
via regression methods and by using appropriate intercept corrections; this is
explained in the next two sections.

6. Suboptimal forecasts by regression methods: weighted
preliminary data

In many cases, the state space framework of the previous section may be difficult
to implement due to the complexity of the models at hand. For instance, it is
certainly no easy task to put such a large model as the BIQM into state space
form and apply the Kalman filter machinery.

For these large models, a more practical approach could be to try to combine
(suboptimally) the two sources of information using regression methods. In par-
ticular, we may want to reduce the noise in the preliminary data, by weighting
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them with the model forecasts, since, as we saw in Sections 2-3, the forecasts can
even outperform the new data.

The strategy we propose is to regress the true data on the preliminary ones and
the model predictions, and use the regression coefficients (weights) to obtain what
we may call weighted preliminary data. If both the preliminary observations and
the model forecasts are unbiased estimators of the true values, then, in principle,
the weights should sum to one. The weighted preliminary data, then, can be
used to obtain modified initial conditions for the model forecasts. Clearly, these
forecasts will have better properties -to some extent- than the standard naive
forecasts of Section 3, though they will be suboptimal if compared with those
from the augmented state space representation described in the previous section.

Notice that if we regard a preliminary observation as a forecast of the under-
lying true value, our construction of the weighted preliminary data corresponds
to the idea of combining forecasts advanced in Bates and Granger (1969).

EXAMPLE: AR(1)+NOISE, d=1. The weighted preliminary data, denoted
x;, can be expressed as

x; = By + (1 = B)X—1, (6.1)

where X;,_1 = ¢x,_; is the one-step-ahead forecast from the AR(1) model and
B = 02/(c% + 02) is the population regression coefficient. The j-step-ahead fore-
cast of x; constructed using the weighted preliminary data is then ¢’ X;_j. This is
exactly the Minimum Mean Square Error forecast obtained from the state space
representation of the previous section, that is, in this simple case the two fore-
casting procedures, optimal and suboptimal, are equivalent.

In general, there are a number of ways to obtain the weights to assign to pre-
liminary observations and model forecasts to construct the weighted preliminary
data. In Table 6, we report the results of a set of ordinary least squares regressions,
labelled R1 to R4, and the implied weights. In each case the dependent variable
is the true value, taken from release 1998.3, and the explanatory variables corre-
spond to the columns selected among those labelled constant, y; 1, X1, it|t_2.6
For example, R2 correspond to the regression (6.1) above; for the cases R2 to R4
we impose the restrictions that weights must sum up to unity and that there be

6In this exercise the one and two-step-ahead forecasts used among the regressors are obtained
projecting the BIQM with the dataset 1998.3. In the simulation experiments S5, S8 in the
next section, by contrast, the weighted preliminary data will be constructed by weighting the
preliminary observations with the naive forecasts from the BIQM.
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no intercept. The sample period is 1988Q1-1994Q4. The R?, the Durbin-Watson
statistics and the p-value for the F-test of the restrictions are reported. The
last column contains the percentage reduction in the mean square error obtained
from using the weighted preliminary data as opposed to treating the preliminary
observations y;; as true values. The figures are constructed from the formula
100(1 — SSER/SSEy), where SSEy = Y(x; — yu)? and SSER = Y €2, e; being
the regression residuals from which of the regressions R1,...,R4 apply in each case.

Table 6 suggests that the BIQM forecasts offer a significant contribution to-
wards more reliable estimates of the true values. The weights associated with
the forecasts can be as high as 0.6 and are highly significant most of the time.
The mean square error of these estimates is also appreciably reduced, e.g. by
21% for GDP and up to 44% for exports. The simple regression R2 appears to
be adequate. As expected, if the one-step-ahead forecast is included among the
regressors, adding the two-step-ahead forecast does not improve the outcome sig-
nificantly. As mentioned, many alternative options for the obtaining the weights
are possible, such as correcting for serial correlation in the residuals and using
system estimates to account for cross correlations among revisions (for the latter,
results are available from the author on request).

7. Forecasting with intercept corrections

Another simple method of reducing the forecast error due to preliminary data
is using intercept corrections (or addfactors), i.e. adjusting the constant term
of certain behavioural equations of the model. Reasons for employing addfac-
tors in the practice of forecasting from structural models are given in Hendry
and Clements (1994) and Siviero and Terlizzese (2001). For example, when a
behavioural relation is thought to be subject to a structural break and thus the
static one-step-ahead forecasts systematically overestimate, or underestimate, the
realized values, it may be appropriate, for the purpose of multistep-ahead fore-
casting, to include a constant adjustment to that equation reflecting the average
static prediction error of the recent past.

For what can be viewed as a general principle, Siviero and Terlizzese (2001,
page 26) argue that it is "undesirable to let the latest data impact on all the
coefficients of a given equation: an adjustment of the sole constant term may in
fact suffice to guarantee that the model is in line with the latest observations ...”.

Hendry and Clements (1994) explicitly consider the case of data measurement
errors to justify the use of intercept corrections in macroeconomic forecasting. For
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a simple AR(1) model they also obtain the expression for the optimal addfactor,
i.e. that which permits to achieve the minimum prediction mean square error.

EXAMPLE: AR(1)+NOISE, d=1. The one-step-ahead forecast of x;,; with
an intercept correction, say d;, is given by ¢y + d;. Equating this with the mini-
mum mean square error forecast ¢x; as defined in (6.1), we obtain the expression
of the optimal addfactor,

CFlvt = —¢(1 = B)(yn — ¢x¢-1),
where, as in (6.1), 8 = 02 /(02 + 0?).

In the practice of forecasting, addfactors are often set equal to some average of
past static simulation errors. Though these will not in general be optimal in the
above sense, they may nevertheless help reduce the forecast mean square error in
the presence of preliminary data. The following section will show this to be so for
the Bank of Italy Quarterly Model.

8. The effect of weighted preliminary data and intercept
corrections in the Bank of Italy Quarterly Model

This section compares the BIQM forecasts using final data with those incorpo-
rating the noise of the preliminary observations (naive forecasts). Two types of
correction are then applied to mitigate the effect of the noise: modifying the initial
conditions by weighting the preliminary data as in Section 6 and using addfactors
as in Section 7. Both methods prove to be effective.

The main problem in carrying out this exercise is incorporating the noise of
the various vintages of data in our forecasts. The difficulty is that it is not
appropriate to simply simulate the model using the series of provisional data while
leaving all the other variables unchanged at their final figures. This is because
those series are related to hundreds of endogenous variables, which should change
accordingly. The strategy we adopt is thus to use the model itself to modify
these other variables, by a so-called renormalization procedure. The idea of the
procedure is to target the values of the preliminary observations through the
use of either certain exogenous variables or the residuals of certain behavioural
equations; the simultaneous structure of the model will then take care of changing
the other endogenous variables in a coherent way. The procedure is described in
detail in Appendix B; similar ideas can be found in Whitley (1994, pp. 200-208).
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In the experiments described below, the targets are the five series of preliminary
data from the national accounts: these have been achieved through the residuals
of five equations, each strongly related to one target.

Table 7 gives the results of eight forecasting experiments, S1 to S8, with the
BIQM. In all cases the BIQM has been simulated sequentially, with starting pe-
riods ranging from 1988Q2 to 1994Q4. The bias and the root mean square error
of the resulting j-step ahead forecasts are reported for our variables of interests,
j = 1,...,8. The differences among the simulations is in the data used and the
presence or absence of addfactors.

The basic simulation, where the final data are used and there are no addfactors,
is S1. As expected, this achieves the lowest forecast RMSE.

In S2 we incorporate the noise corresponding to the latest observation of the
latest released data prior to each simulation period, 1988Q2 to 1994Q4: this is
done by applying the growth rates of the latest observation to the levels of the final
figures” and renormalizing the model as described in Appendix B. For example,
for the simulation over the horizon 1990Q1-1991Q4 we take as initial conditions
the final data up to period 1989Q3 and modify the observations of GDP, CON,
INV, EXP, IMP for 1989Q4 by taking the growth rates at period 1989Q4 from the
vintage 1989.4 and applying them to the final levels at time 1989Q3; the modified
levels for 1989Q4 obtained in this way are then used as target variables for the
renormalization procedure, by which in principle all the endogenous variables will
turn out to be modified, at time 1989Q4, according to the reconstructed levels
(incorporating the noise) of our five series from the national accounts.

In S3 we replace the artificially constructed noisy observations of S2 with the
weighted preliminary data as initial conditions. The weighted preliminary data are
obtained by using the weights corresponding to the regression R2 of the previous
section to compute the modified growth rates and then applying the latter to the
final levels as above.

The noise of the whole set of 11 preliminary observations corresponding to
the latest released data prior to the simulation horizon is embedded in the initial
conditions of S4: this is done by applying the 11 growth rates to the final levels
(of 12 periods before) and renormalizing. Note that in this experiment the initial
conditions are different from those of S1 for 11 quarters prior to the simulation,
reflecting the fact that the revision process should be terminated after three years.

The noise embedded in the initial conditions of S4 is mitigated in S5 by

"Simply sticking in the levels of the latest released data is not correct as in general the
base-year of the final figures is different from that of the preliminary data.
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weighted preliminary data regressions, in S6-S7 by the use of addfactors and in
S8 in both ways. The difference between S6 and S7 consists in the computation
of the addfactors: in the former it is the average of the four most recent residuals,
in the latter that of the eight most recent. Four residuals are also used in the
addfactor of S8.

The following Table summarizes the characteristics of the eight experiments;
the column labelled Periods shows the number of quarters, prior to the beginning
of the simulations, with initial conditions differing from those of S1.

Experiment Initial Conditions Periods  Addfactors

S1: Final data — NO

S2: Preliminary data 1 NO

S3: Weighted preliminary data 1 NO

S4: Preliminary data 11 NO

S5: Weighted preliminary data 11 NO

S6: Preliminary data 11 YES: 4 residuals
ST: Preliminary data 11 YES: 8 residuals
S8: Weighted preliminary data 11 YES: 4 residuals

Consider first experiments S2 and S4, which essentially correspond to the
definition of naive forecasts of Section 3. Introducing the preliminary data noise
considerably amplifies the forecast error. For the series of consumption, the one-
step-ahead RMSE doubles, from 0.35% when the final data are used to 0.7%
when all 11 preliminary observations are considered. For the other series, the
deterioration in forecasting performance is less dramatic but still sizeable. Note
that much of the extra volatility seems to be attributable to the first release, as
the difference between S2 and S4 is not as great as that between S1 and S2.

As predicted by the theoretical arguments of Section 3, we find that the erratic
nature of the preliminary data often makes the 1- and 2-step-ahead forecasts less
reliable than those at larger horizons. For example, the 2-step-ahead RMSE of
GDP in S4 is 0.99%, against 0.69% of the 4-step-ahead one.

In general, modifying the initial conditions by the use of weighted preliminary
data (S3 and S5) improves performance by comparison with the naive forecasts,
especially at shorter horizons. The correction turns out to be especially effective
for GDP. Two exceptions seem to be investment and consumption in experiment
S5: the former appears even more volatile while the latter remains virtually un-
changed. Notice that in the construction of the weighted preliminary data for S5
we have regressed the final figures on the first-release data and the one-step-ahead
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forecasts from S4 (naive forecasts). Alternatively one could use as regressors the
one step ahead forecasts from S1 in place of S4: this was not done since in actual
forecasting the final data are almost never available. Moreover, in S5 only the
most recent noisy observation is replaced by the corresponding weighted prelimi-
nary datum; clearly one could try to adjust the initial conditions in a similar way
also for the previous periods and obtain even better results.

The use of addfactors also appears very effective, particularly in reducing the
extra bias of the naive forecasts S4. A notable example is imports, where the
estimated bias of S6 is -0.12% as opposed to -1.94% for S4; for this series the
estimated bias in the simulations S6 to S8 is even lower than that in S1. Combining
the two methods of weighted preliminary data and addfactors in general permits
to achieve extra gains in terms of bias and RMSE: the results of experiment S8
are generally better than those of S5, S6 and S7.

In summary, Table 7 provides quite strong evidence that the strategies outlined
for reducing the extra noise due to the presence of preliminary data can be suc-
cessful. However, the results are not only model-dependent but are also based on
somewhat arbitrary decisions about the construction of the weighted preliminary
data and the choice of instruments in the renormalization procedure. As a check
for robustness, alternative options for the sets of instruments and regressions have
been adopted, providing in all cases results qualitatively similar to those reported
in Table 7. There is therefore good reason for confidence that the outcome of
these experiments sustains the effectiveness of the suggested modifications to the
naive forecasts.

9. Concluding remarks

The paper has considered the impact of provisional data on econometric forecasts.
Two simple methods alternative to the state space framework adopted in much of
the literature have been proposed to reduce the extra volatility of the forecasts due
the presence of preliminary observations. The methods are particularly appeal-
ing for large-scale macroeconometric models. A series of simulation experiments
with the Bank of Italy Quarterly Model suggest that the methods work well in
practice. Substantiation of these results, e.g. by considering alternative models
and datasets, is a direction for future research.
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Appendix A: Mean square error of naive
forecasts

Let p* = mazx(d, p). By the Markov representation of an autoregressive model,
the system (2.1)-(2.2) can be rewritten as

Y, = ct+AX;+%, (9.1)

Xt - ﬁt,1 + ﬁt, (92)

where, if d < p, Y; = (Yg,xg_d,...,xg_p+1)', g = (¢},0,..,0)",¢ = (c,0),
Xt = Xtu

@1 @2 @p*—l @p* L
Fy r 0o .. 0O 0 T, = 0 7
O o0 .. I 0 0

J— J— / J—
whereas, ifd > p, Y, =Y;, &, =¢&;,,c=c, X; = (Xt,ngp, ...ngd) , @ is given
by the previous expression after setting ®441, ..., ®,+ equal to 0, and U, is as

before.
The naive forecast for x; (3.1) can also be expressed by taking the first n

components of the np* dimensional vector th\irjlt’ defined as

X, =2'Y.
Then
Xt—i—j - XJtVJrj\t - (Xt—&-j - ijt) - Ejgt - Ej (E + (K—I) Xt) ,
and B _N B IV B B
E (Xt+j - Xt+j|t) (Xt+j - Xt+j|t) =F(@) + G() +H(), (9-3)
where

F(j) = B (X, X, (Xoyy - BX,) = M5B (Xoi).
() = PEE=)P
() = & (A-1)E(XX) (A-1)3"
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From the previous expressions it is clear that F(j + 1) — F(j) is a positive
definite matrix, whereas both G(j +1) — G(j) and H(j + 1) — H(j) are negative
semidefinite, as the eigenvalues of @ are inside the unit circle.

The mean square error of the naive j-step ahead forecast is the n x n top left
block of (9.3), i.e. Fi1(j) + G11(4) + Hi1(5), where for M(-)=F(-),G(:),H(-) we

partition the np* x np* matrix M(-) as

0 =(Nal) mit) )

with My;(+) being n x n. Using the result of Rao (1973, p.32), it follows that if
M(j + 1) — M(j) is positive (negative) semidefinite, so is My (j + 1) — My, (j).
This proves the claim of Section 3 that the mean square error of the naive fore-
casts can be written as the sum of a negative semidefinite matrix and a positive
semidefinite one.
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Appendix B: Renormalization
Consider the simple model

C = [GY +e,
Y = C+1,

where C, Y are the endogenous variables, I, e are the exogenous variables and (3 is
a fixed coefficient. Let C" = C'+ AC be a preliminary observation, which we want
to target: in this context we may think of AC as a revision error which makes
the preliminary value C’ different from the final figure C.

The renormalization procedure consists in obtaining a solution of the model
in terms of C”. The solution can be achieved by using e as instrument, i.e. by ex-
changing the roles between the endogenous variable C' and the exogenous variable
e. By doing so, one easily obtains ¢ = e + (1 — B)AC and Y’ =Y 4+ AC. Thus
C')Y" is a solution of the model in terms of €', I.

In general, consider a nonlinear model in reduced form

Y = f(X;0),

where Y and X are the endogenous and exogenous variables, 6 are coefficients
and f is a "well-behaving” nonlinear map. Partition Y = (Y7,Ys) , X = (X3, X»),
with Y; and X; having the same number of elements, say k, and let

Y,
fi= X,

with f; being a k x k full rank matrix. If the target is Y/ = Y; + AY], the
model has the solution Y’ = f(X’;0), where X’ = (X; + f; 'AY}, X5) and Y/ ~
(Y, Ya + fofi 'AY)),

The procedure then consists in putting a (possibly nonlinear) structural model
such as the BIQM in reduced form and computing the jacobians f7, fs. In practice,
though, one can obtain the jacobians without having to derive the reduced form
analytically, but by applying small shocks to X; from a current solution of the
model and computing the resulting values for the endogenous variables. Then,
only f; needs to be determined: through f; one in fact obtains the X| to plug
into the structural or reduced form of the model for achieving Y.

If the model is dynamic, in general it can be written as A(L)Y = f(X;0),

where
Ay (L) Ap(L)
AlL) = ( An(L) An(L) )

i=1,2,
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is a polynomial in the lag operator L, partitioned comformably with Y. Then the
solution Y’, X’ obtained above still holds, with f; = 0(A%(L)f(X;))/0X1,i=1,2,
and A*(L) = A(L)™! has the same partitioned structure as A(L).

This renormalization procedure is frequently adopted in the forecasting ex-
ercises with the BIQM, for example when only part of the overall data can be
updated by the new observations produced by the statistical agencies. A more
detailed treatment of these methods and their use in policy analysis can be found
in Whitley (1994, pp. 200-208).

The experiments of Section 8 use the full BIQM, the targets being the prelim-
inary observations for the five series of GDP, consumption, investment, exports,
imports, all in real terms. Instruments were the residuals of five behavioural equa-
tions relating to the series of inventories, consumption, investment, exports and
imports.
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Table 1
First 12 vintages and final value for percentage growth rate of real GDP

Observation | Vi1 Vio Yz Y4 Yis  Yie Yz Yis Yo VYo Yeur o Yeiz | 19983
1988 Q1 1.251 1.446 0.999 1.101 1.100 1.102 1.250 1.194
1988 Q2 0.636 0.777 0.542 0.680 0.622 0.644 0.567 0.897 0.512
1988 Q3 1.063 0.729 1.064 1.059 1.018 0.808 0.703 0.697
1988 Q4 1.013 1.044 0.641 0.832 0.838 0.904 0.760 0.803 0.961
1989 Q1 0.735 0.991 0.678 0.604 0.814 0.580 0.638 0.698 0.604
1989 Q2 0.660 0.799 0.871 0.767 0.934 0.859 0.935 0.935 0.538
1989 Q3 0.699 0.826 0.783 0.678 0.971 0.859 0.862 0.862 0.772 0.688
1989 Q4 0.436 0.517 0.719 0.702 0.355 0.386 0.426 0.426 0.545 0.545 1.209
1990 Q1 0.939 0.624 0.820 0.839 0.744 0.750 0.739 0.744 0.754 0.739 0.629
1990 Q2 -0.202 -0.383 -0.201 0.119 0.088 0.071 0.015 -0.023 -0.077 0.035
1990 Q3 0.662 0.502 0.397 0.886 0.992 0932 0.977 1.071 1.071 0.413
1990 Q4 0.086 -0.090 -0.105 -0.223 -0.113 -0.129 -0.428 -0.428 -0.428 | -0.372
1991 Q1 0.349 0.603 0.523 0.339 0.395 0.415 0415 0.497 0.415 0.246 0.528
1991 Q2 0.420 0.466 0.623 0550 0.526 0.477 0.474 0535 0.383 0.383 0.309
1991 Q3 0.053 0.204 0.335 0.260 0.181 0.332 0.124 0.231 0.500 0.500 0.500 0.687
1991 Q4 0.289 0.445 0436 0.587 0.466 0.565 0.493 0.640 0.640 0.640 0.640 0.381
1992 Q1 0.583 0.552 0.569 0.537 0.632 0.473 0.244 0.414 0.313 0.419 0.607 0.196
1992 Q2 0.216 0.248 0.168 0.234 0.315 0.146 0.016 0.100 -0.081 -0.100 0.075
1992 Q3 -0.610 -0.452 -0.716 -0.544 -0.762 -0.961 -0.880 -0.860 -1.052 -1.052 | -0.483
1992 Q4 -0.571 -0.494 -0.510 -0.190 -0.075 -0.088 -0.010 0.003 0.003 0.003 | -0.601
1993 Q1 -0.142 -0.204 -0.460 -0.238 -0.329 -0.329 -0.473 -0.545 -0.510 -0.764 | -0.622
1993 Q2 0.762 0.707 0.399 0.257 0.242 0.230 0.003 0.169 0.132 0.267 0.149 0.064
1993 Q3 -0.475 -0.427 -0.636 -0.581 -0.688 -0.873 -0.960 -0.992 -0.858 -0.733 -0.297 | -0.261
1993 Q4 0.800 0.947 1.034 1.191 1.117 1.081 1.116 1.059 1.041 0.819 0.819 0.883
1994 Q1 0.070 0.411 0.289 0.358 0.310 0.212 0.268 0.289 0.139 0.165 0.241 0.407
1994 Q2 1.402 1.135 0.986 0.841 1.033 0.977 0916 1331 1.260 1.169 1.170 1.075
1994 Q3 0.989 1.318 1506 1595 1374 1.382 0.785 0.800 0.756 0.756 0.756 0.567
1994 Q4 0.024 0.387 0.033 -0.021 -0.023 0.279 0.359 0.473 0.473 0.473 0473 0.441
1995 Q1 1.347 1524 1378 1240 1530 1550 1405 1501 1.609 1.616 1.705 1.705
1995 Q2 -0.385 -0.090 -0.047 0.064 0.210 0.133 0.127 0.160 -0.066 -0.029 -0.095 -0.095 | -0.095
1995 Q3 1.951 1.844 2.052 0.606 0.598 0.634 0.490 0.555 0409 0.616 0.616 0.616 0.616
1995 Q4 -0.916 -1.060 0.083 0.050 0.290 0.100 0.221 0.373 0.378 0.378 0.378 0.378 0.378




Preliminary data errors for Italian quarterly national accounts

Vintage

1 2 3 4 5 6 7 8 9 10 11

mean | -0.04 | 010 | -0.03 | 005 | -0.04 | 005 | 003 | 0.01 [ -002 | 0.02 | 0.02

GDP  sdev. | 049 | 049 | 047 | 031 | 041 | 027 | 023 | 026 | 026 | 019 | 017
rmse | 048 | 049 | 046 | 031 | 040 | 027 | 023 | 026 | 025 | 019 | 017
mean | 005 | 008 | 005 | -001 | -0.04 | 002 | 008 | -0.02 | 000 | -0.04 | -0.01

CON  sdev. | 037 | 038 | 038 | 030 | 033 | 025 | 023 | 019 | 017 | 015 | 0.08
rmse | 036 | 038 | 038 | 039 | 033 | 025 | 024 | 019 | 017 | 016 | 0.08
mean | 025 | -002 | 015 | -003 | 014 | -005 | 012 | 015 | 006 | 0.00 | -0.01

INV.  sdev. | 113 | 120 | 113 | 117 | 115 | 090 | 097 | 071 | 062 | 057 | 042
rmse | 113 | 148 | 112 | 114 | 114 | 088 | 096 | 072 | 061 | 057 | 042
mean | -0.16 | 023 | 0.08 | 053 | 048 | 036 | 022 [ 022 | 002 | -0.03 | 018

EXP  sdev. | 225 | 179 | 228 | 203 | 178 | 1.59 | 166 | 1.21 | 1.33 | 069 | 1.05
rmse | 221 | 177 | 223 | 206 | 181 | 160 | 164 | 121 | 1.31 | 068 | 1.05
mean | 014 | 006 | 0.16 | 006 | 033 | -004 | 014 | 046 | -028 | 0.14 | -0.15

IMP  sdev. | 1.33 | 115 | 116 | 145 | 095 | 1.77 | 165 | 1.78 | 1.85 | 123 | 117
rmse | 131 | 133 | 115 | 142 | 099 | 174 | 163 | 181 | 184 | 122 | 117

N 24 | 25 | 26 | 27 | 28 | 29 | 30 | 3 | 32 | 33 | 34

Table 2



Correlations among revision errors

Table 3

1 2 3 4 5 6 7 8 9 10 11
1 1
2 0.94 1
3 0.81 0.80 1
4 050 0.61 0.55 1
5 038 049 0.71 0.85 1
6 044 055 031 080 0.69 1
7 0.17 035 029 077 082 0.79 1
8 016 034 036 060 070 0.73 0.74 1
9 009 013 0.06 048 040 061 0.61 0.78 1
10 012 016 026 051 034 052 036 085 0.61 1
11 014 025 030 040 032 049 033 052 0.87 0.62 1




Test of unbiasedness of preliminary data

Table 4

Release

1 2 3 4 5 6 7 8
F prob. 0.90 0.28 0.11 0.54 0.00 0.27 0.06 0.21
GDP s.e. 0.50 0.48 0.44 0.31 0.33 0.27 0.22 0.25
R? 0.49 0.52 0.42 0.75 0.62 0.81 0.84 0.81
F prob. 0.00 0.07 0.06 0.20 0.12 0.33 0.20 0.19
CON s.e. 0.26 0.35 0.35 0.28 0.31 0.25 0.23 0.19
R’ 0.58 0.56 0.58 0.77 0.73 0.84 0.89 0.89
F prob. 0.00 0.00 0.00 0.01 0.02 0.00 0.09 0.02
INV s.e. 0.75 0.83 0.81 0.99 1.01 0.73 0.91 0.65
R? 0.61 0.74 0.78 0.74 0.75 0.84 0.79 0.88
F prob. 0.51 0.42 0.17 0.43 0.17 0.48 0.15 0.22
EXP s.e. 2.23 1.77 2.16 2.07 1.76 1.62 1.59 1.19
R? 0.71 0.71 0.79 0.75 0.69 0.75 0.85 0.90
F prob. 0.87 0.93 0.25 0.97 0.06 0.98 0.90 0.37
IMP s.e. 1.36 1.18 1.13 1.48 0.92 1.80 1.68 1.81
R* 0.68 0.80 0.85 0.73 0.89 0.58 0.66 0.64

N 24 25 26 27 28 29 30 31




Forecast errors of the BIQM - Rolling simulations 1985Q1-1994Q4

Forecast Horizon

1 2 3 4 5 6 7 8

bias -0.04 -0.08 -0.13 -0.19 -0.25 -0.30 -0.38 -0.47

log(GDP) s.dev. 0.59 0.79 0.96 1.11 1.22 1.35 1.42 1.48
RMSE 0.58 0.78 0.95 1.11 1.23 1.36 1.45 153

bias -0.04 -0.04 -0.05 -0.06 -0.06 -0.05 -0.08 -0.09

Alog(GDP) s.dev. 0.59 0.68 0.64 0.67 0.66 0.63 0.66 0.66
RMSE 0.58 0.67 0.64 0.66 0.66 0.63 0.66 0.65

bias -0.11 -0.17 -0.22 -0.25 -0.32 -0.38 -0.45 -0.52

log(CON) s.dev. 0.35 0.68 0.94 1.08 1.21 1.33 1.44 1.50
RMSE 0.36 0.69 0.95 1.09 1.24 1.37 1.49 157

bias -0.11 -0.06 -0.05 -0.03 -0.07 -0.06 -0.07 -0.07

Alog(CON) s.dev. 0.35 0.41 0.39 0.39 0.40 0.40 0.41 0.41
RMSE 1.36 0.41 0.39 0.39 0.40 0.40 0.41 0.41

bias -0.06 -0.02 0.00 0.06 0.15 0.19 0.19 0.10

log(INV) s.dev. 1.02 1.72 2.15 2.56 2.82 3.11 3.46 3.98
RMSE 1.01 1.70 2.13 2.53 2.78 3.07 3.42 3.93

bias -0.06 0.04 0.03 0.06 0.09 0.04 0.00 -0.08

Alog(INV) s.dev. 1.02 1.12 1.14 1.14 1.09 1.22 1.23 1.27
RMSE 1.01 1.10 1.13 1.12 1.08 1.20 1.22 1.26

bias -0.13 -0.11 -0.14 -0.23 -0.39 -0.64 -0.75 -0.87

log(EXP) s.dev. 2.46 2.55 2.63 2.75 2.92 2.88 3.14 3.21
RMSE 2.43 2.52 2.60 2.73 2.90 2.91 3.19 3.28

bias -0.13 0.03 -0.03 -0.09 -0.16 -0.25 -0.12 -0.12

Alog(EXP) s.dev. 2.46 3.03 3.09 3.23 3.31 3.26 3.17 3.19
RMSE 2.43 2.99 3.05 3.19 3.27 3.23 3.14 3.15

bias -0.32 -0.45 -0.63 -0.73 -0.88 -0.97 -0.12 -1.42

log(IMP) s.dev. 2.28 2.69 3.02 3.41 3.88 4.14 4.52 4.90
RMSE 2.27 2.70 3.05 3.44 3.93 4.20 4.63 5.04

bias -0.32 -0.13 -0.19 -0.10 -0.15 -0.09 -0.26 -0.19

Alog(IMP) s.dev. 2.28 2.58 2.58 2.65 2.66 2.66 2.84 2.85
RMSE 2.27 2.56 2.56 2.62 2.63 2.62 2.82 2.82

Table 5



9 9|qel

68°CET 0T1'99 L6'T .90 (290) OT'0- (86'T) 8E'0 (ov'v) 2L°0 12-|
[ ¢1'89 6€'¢C 290 (85°0) 80°0 (¥8'9) 26°0 ¢d
144" LT°99 L0°¢C 99°0 (86'T) TE0 (Lv'v) 69°0 rA:| dinl
1783 A4 290 (e59) 280 (2€0) GT'0 1y
09'cv €1°8¢ T 290 (66'0) 2T°0 (0e2) T¥°0 (e8€) L0 12-|
XA 69'TT 11°¢ 950 (65°€) €€°0 (ezl) 190 ¢d
8’1y 91°'9¢ 1¢T €9°0 (ov'v) ¥5°0 (08'€) 9¥°0 cd dx3
6v'cy L0°¢C 09°0 (929) 6G°0 (8€'1) 6G°0 1y
TT've ev'e 9C¢'T G80 (61°0) €0°0 (82¢) ¥5°0 (ev'2) €V°0 12-|
869 809 0cT 6.0 (ev'T) ¥2°0 ¥9v) 92°0 ¢y
c0've c0’s 0eT Gg8'0 (rL€) 9G°0 (862) ¥¥7°0 rA-| ANI
1ZA) 90°¢ GL°0 (c68) ¥Z'T (sT1) €2°0- 1y
06°¢ce L0'¥9 €1 S0 (LzT) TZ0 (e02) ¥¥°0 (26'1) 9€°0 12
8¥'¢¢ 65°9€ 8T'T €L0 (982) O¥'0 (L) 09°0 ¢d
£€8'8¢ ¢T1'69 or'T .0 (9g'€) 09°0 (82°2) OV°0 cd NO3
08'1T T L9°0 (cz2) 860 (211) 2T°0- 1y
EV'1¢ 8/.°6¢€ VST .90 (9v'0) ¥0°0 (ov'2) 220 (289) ¥1°0 12-|
v8'v 9€9T €0’¢ 290 (Tz1) ¢T0 (s6'8) 88°0 ¢d
¢T'1e 6T'GE 8G'T L9°0 (rL2) €2°0 (s16) 220 rA:| das
89°LT G9'T 290 (s59) GL°0 (£20) 90°0 1y
(%) @ssv qoad-4 mma 2d by iy VIR JuRISUOD

suolssaibai eyep Aeuiwnjaid pajybiapn



Comparison of forecasts from the BIQM - Rolling simulations 1988Q2-1994Q4

1 2 3 4 5 6 7 8

s1 bias -0.14 -0.09 -0.01 -0.01 -0.02 -0.04 -0.11 -0.14
rmse 0.60 0.71 0.67 0.70 0.69 0.68 0.72 0.70

S2 bias -0.19 -0.14 -0.06 -0.04 -0.04 -0.05 -0.11 -0.15
rmse 0.77 0.76 0.67 0.67 0.73 0.65 0.72 0.71

sS3 bias -0.13 -0.10 -0.08 -0.07 -0.07 -0.05 -0.11 -0.14
rmse 0.75 0.71 0.68 0.71 0.72 0.67 0.72 0.71

sS4 bias -0.38 -0.49 -0.31 -0.20 -0.09 -0.08 -0.13 -0.18
GDP rmse 0.85 0.99 0.73 0.69 0.68 0.68 0.73 0.72
S5 bias -0.36 -0.39 -0.30 -0.22 -0.13 -0.08 -0.13 -0.18
rmse 0.81 0.87 0.72 0.72 0.70 0.68 0.73 0.72

S6 bias -0.21 -0.12 -0.15 -0.13 -0.13 -0.12 -0.18 -0.22
rmse 0.72 0.78 0.76 0.72 0.75 0.75 0.74 0.76

s7 bias -0.29 -0.18 -0.14 -0.10 -0.11 -0.11 -0.19 -0.23
rmse 0.74 0.85 0.72 0.71 0.73 0.72 0.73 0.74

S8 bias -0.22 -0.11 -0.13 -0.13 -0.14 -0.12 -0.18 -0.22
rmse 0.73 0.75 0.73 0.73 0.75 0.75 0.74 0.75

s1 bias 0.01 0.03 0.01 0.00 -0.03 -0.04 -0.06 -0.08
rmse 0.35 0.44 0.43 0.45 0.46 0.47 0.47 0.48

S2 bias -0.05 -0.08 -0.10 -0.07 -0.06 -0.05 -0.06 -0.09
rmse 0.64 0.53 0.55 0.60 0.59 0.51 0.50 0.53

sS3 bias -0.05 -0.09 -0.12 -0.08 -0.06 -0.04 -0.06 -0.10
rmse 0.59 0.54 0.56 0.57 0.56 0.50 0.50 0.52

sS4 bias -0.45 -0.68 -0.64 -0.40 -0.18 -0.06 -0.08 -0.15
CON rmse 0.70 0.86 0.85 0.69 0.53 0.48 0.50 0.53
S5 bias -0.45 -0.68 -0.64 -0.41 -0.18 -0.06 -0.08 -0.15
rmse 0.70 0.86 0.85 0.69 0.52 0.48 0.50 0.53

S6 bias -0.13 -0.08 -0.07 -0.07 -0.10 -0.12 -0.13 -0.15
rmse 0.61 0.61 0.60 0.60 0.61 0.63 0.65 0.61

s7 bias -0.12 -0.06 -0.05 -0.06 -0.10 -0.12 -0.13 -0.14
rmse 0.58 0.59 0.61 0.62 0.59 0.57 0.57 0.57

S8 bias -0.13 -0.08 -0.07 -0.07 -0.11 -0.12 -0.13 -0.15
rmse 0.61 0.61 0.59 0.59 0.60 0.62 0.64 0.61

s1 bias -0.06 0.00 0.02 0.09 0.14 0.06 -0.11 -0.33
rmse 0.88 1.08 1.13 1.16 1.13 1.24 1.26 1.29

S2 bias -0.09 -0.07 -0.05 0.02 0.08 0.01 -0.17 -0.38
rmse 0.97 1.12 1.18 1.18 1.14 1.25 1.27 1.30

sS3 bias -0.11 -0.03 0.00 0.03 0.07 -0.02 -0.18 -0.38
rmse 0.94 1.14 1.15 1.18 1.14 1.27 1.27 1.29

sS4 bias -0.22 -0.27 -0.36 -0.31 -0.21 -0.22 -0.37 -0.58
INV rmse 1.01 1.20 1.31 1.31 1.16 1.28 1.35 1.42
S5 bias -0.27 -0.26 -0.29 -0.25 -0.19 -0.23 -0.37 -0.57
rmse 1.12 1.24 1.26 1.27 1.12 1.28 1.34 1.41

S6 bias -0.26 -0.30 -0.28 -0.27 -0.24 -0.32 -0.47 -0.68
rmse 1.07 1.32 1.42 1.48 1.34 1.42 1.34 1.48

s7 bias -0.28 -0.35 -0.35 -0.33 -0.27 -0.36 -0.53 -0.77
rmse 1.05 1.27 1.35 1.46 1.38 1.41 1.40 1.45

S8 bias -0.33 -0.35 -0.31 -0.27 -0.24 -0.32 -0.48 -0.68
rmse 1.22 1.31 1.32 1.35 1.24 1.41 1.36 1.48

s1 bias -0.06 0.09 -0.05 -0.06 -0.11 -0.17 -0.13 -0.08
rmse 2.10 2.55 2.52 2.59 2.68 2.57 2.59 2.62

S2 bias 0.20 0.18 -0.01 -0.04 -0.08 -0.16 -0.11 -0.06
rmse 2.24 2.97 2.62 2.63 2.57 2.49 2.53 2.63

sS3 bias 0.05 0.18 0.10 0.01 -0.07 -0.17 -0.12 -0.06
rmse 2.27 2.90 2.67 2.64 2.65 2.53 2.59 2.61

sS4 bias 0.76 0.73 0.01 0.04 -0.08 -0.14 -0.07 0.04
EXP rmse 2.64 2.84 2.77 2.61 2.67 2.54 2.57 2.64
S5 bias 0.39 0.47 0.14 0.04 -0.07 -0.14 -0.07 0.03
rmse 2.74 2.62 2.66 2.58 2.64 2.54 2.62 2.64

S6 bias 0.41 0.27 0.23 0.04 -0.03 -0.14 -0.05 -0.03
rmse 2.48 2.82 2.67 2.68 2.72 2.62 2.75 2.59

s7 bias 0.67 0.31 0.20 0.07 0.01 -0.05 0.02 0.04
rmse 2.26 2.88 2.68 2.63 2.66 2.60 2.67 2.67

S8 bias 0.21 0.21 0.23 0.07 -0.04 -0.13 -0.08 -0.03
rmse 2.47 2.74 2.63 2.68 2.70 2.62 2.79 2.61

s1 bias -0.69 -0.21 -0.08 0.21 0.12 -0.02 -0.29 -0.31
rmse 1.97 2.34 2.42 2.40 2.39 2.45 2.71 2.76

S2 bias -0.81 -0.37 -0.13 0.16 0.07 -0.06 -0.32 -0.32
rmse 3.00 2.61 2.41 2.20 2.27 2.51 2.64 2.75

sS3 bias -0.50 -0.14 -0.07 0.09 0.01 -0.08 -0.30 -0.31
rmse 2.50 2.57 2.41 2.30 2.40 2.53 2.68 2.75

sS4 bias -1.94 -1.12 -0.82 -0.17 -0.21 -0.21 -0.38 -0.30
IMP rmse 3.80 2.71 2.80 2.32 2.29 2.46 2.69 2.77
S5 bias -1.74 -1.04 -0.70 -0.32 -0.30 -0.26 -0.37 -0.29
rmse 3.34 2.73 2.71 2.43 2.40 2.48 2.71 2.76

S6 bias -0.12 -0.31 -0.15 -0.09 -0.12 -0.24 -0.48 -0.55
rmse 2.85 2.62 2.60 2.57 2.54 2.68 2.84 2.85

s7 bias -0.34 -0.51 -0.19 -0.01 -0.06 -0.25 -0.52 -0.58
rmse 3.10 2.50 2.66 2.51 2.50 2.59 2.72 2.79

S8 bias -0.12 -0.13 -0.11 -0.11 -0.18 -0.29 -0.52 -0.54
rmse 2.41 2.72 2.67 2.59 2.59 2.70 2.88 2.83

Table 7





