
MATLAB routines for trend agnostic one step
estimation of a small New Keynesian model

Filippo Ferroni∗

December 30, 2008

1 Introduction

This document is aimed to provide a guide for the MATLAB routines for the estimation

of a small New Keynesian model using the trend agnostic one step approach. Reference

and details of the estimation procedure can be found in the paper Trend agnostic one step

estimation of DSGE models. I wrote the routines with MATLAB version R2006a.

2 MATLAB files

The folder MATLAB_routines contains several .m files and two folder, database and POSTERIORS.

database contains the data used for the estimation. The times series are GDP, hours worked,

real wages and inflations from 01-04-1964 to 01-04-2007. POSTERIORS collects files, tables

and graphs for the posterior analysis.

MAIN.m is the main programm, which calls the different econometric procedures to es-

timate the structural parameters of the DSGE model. The program loads the data and

calls the RWM algorithm to compute the posterior distributions under different settings.

Data is loaded from the folder database. For the two step setup, data is first filtered and

stored in a (174 × 4 × 3) matrix, DATA, where the third dimension refers to the filter. So,

the matrix DATA(:,:,1) contains linear detrended data, DATA(:,:,2) the HP filtered data,

DATA(:,:,3) the first difference of the data. For the one step, data is raw, data. I consider

∗Department of Economics, Universitat Pompeu Fabra, Carrer Ramón Trias Fargas, 25-27, 08005
Barcelona, Spain. Office: 20.159, Jaume I building. Phone: 0034 93 542 2689. e-mail: fil-
ippo.ferroni@upf.edu.

1



two types of estimation approaches: two step, where data is first filtered and then DSGE

structural parameters are estimated, and one step, where structural and filtering parameters

are jointly estimated. For each approach I consider three filters: linear detrending, HP filter

and first difference. Thus, we have 6 setups. For each setup, parameters are estimated using

Monte Carlo Markov Chain simulators, in particular using a RWM algorithm (see below).

The output is saved in a .mat file according to the econometric approach (one step, 1s, or

two step, 2s) and to type of filter (linear detrending, lt, HP filter, hp, and first difference,

fd); for example, 1s_output_hp.mat means that we estimate the parameters with the one

step method using the HP filter. Output is stored in the folder .\POSTERIORS\output.

RWM.m is the Random Walk Metropolis-Hastings algorithm. Details on the algorithm

can be found in the paper. The inputs are: the set of times series, dy, an initial value for

the parameters, theta, a value for the variance matrix of the algorithm, VAR, the type of

estimate, where two step = 2s, hp-dsge = hp, lt-dsge = lt and fd-dsge = fd. The main

output of the estimations is a vector, called theta_p, which contains all the accepted draws

and whose dimension depends on the number of iterations, N. Notice that the value for N is

set in MAIN.m. A ’safe’ number of repetition is 1 million draws; that ensures convergence for

all the parameters. It takes about 4-5 hours for each setup depending on the RAM of your

computer. If you want to see how the program works, 200,000 draws are fine, but you might

need to change some stuff in the files that compute the posterior distributions and statistics.

Other outputs are loglike_p and logprior_p; they are vectors that collects the values

of the likelihood and of the prior computed at each raw elements of theta_p, respectively.

Finally, acc is the frequency by which we accept the draws; we tried to keep it around 20-35%.

initialvalues.m is a function that loads the initial value for the parameters to start the

RWM algorithm. Clearly, the dimension of the vector of parameters depends on the type

of estimation. Whereas for the two step the dimensionality of the parameter vector is the

same regardless of the filter used, in a one step approach the number of parameters depends

on the filter used. In particular, in a two step approach the parameters vector contains

the DSGE structural parameters, in the hp-dsge setup the parameters vector contains the

DSGE structural parameters and four filter standard deviations, in the lt-dsge setup the

parameters vector contains the DSGE structural parameters, four standard deviations and

four slopes1, in the fd-dsge setup the parameters vector contains the DSGE structural pa-

1I do not estimate the intercept because they do not converge. I fix them to the first observation of the
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rameters, four standard deviations and four constants. In the lt-dsge setup, the initial value

for the slope of the linear trend is the OLS estimator. In the fd-dsge setup, the initial value

for the constant of the unit root specification is given by the mean of the first difference data.

model.m rewrites the DSGE linearized equilibrium conditions in matrix form and in a

way that suits the Uhlig (1998) algorithm, solve.m. The output is the solution of the DSGE

linearized model in form of matrices, PP,QQ,RR,SS,NN. If there is no stable solution, then

PROBLEM=0 and the solution matrices PP,QQ,RR,SS,NN are set to zero. The DSGE model

equilibrium conditions are

λt = εχt − σcyt
yt = εat + nt

mct = ωt + nt − yt
mrst = −λt + σnnt

ωt = mrst

rt = ρrrt−1 + (1− ρr)(ρππt + ρyyt) + εrt

λt = Et(λt+1 + rt − πt+1)

πt = kp(mct + εµt ) + βEtπt+1

εχt = ρχε
χ
t−1 + νχt

εat = ρaε
χ
t−1 + νat

λt is the marginal utility of consumption and σc elasticity of intertemporal substitution. The

shadow value of consumption is hit also by a preference shock, εχt , which I assume to follow

an AR(1) process. Total factor productivity, εat , is assumed to be a stationary AR(1) process.

The difference between real wage, ωt, and the marginal product of labor, yt − nt, defines

the marginal cost, mct. Since labor market is perfectly competitive and frictionless, there

is no wage markup and the marginal rate of substitution, mrst, is equal to the real wage.

The marginal rate of substitution between working and consumption depends positively on

hours worked, where σn is the inverse of the Frish elasticity of labor supply. β is the time

discount factor. The NKP curve is hit by a cost push shock, εµt . The slope of the Phillips

curve is kp = (1 − ζp)
1−βζp
ζp

, where ζp is the probability of keeping the price fixed. The

four exogenous processes are driven by mutually uncorrelated, zero mean innovations, i.e.

νt = [νχt , ν
a
t , ν

r
t , ν

µ
t ].

data.
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I define xt as the vector of endogenous states,

xt = [λt,mct,mrst, rt].

yt as the endogenous variables vector,

yt = [yt, nt, ωt, πt]

zt as the vectors of exogenous processes,

zt = [εχt , ε
a
t , ε

r
t , ε

µ
t ]

model.m rewrites the above system of equation such that

0 = AAxt +BBxt−1 + CCyt +DDzt

0 = Et[FFxt+1 +GGxt +HHxt−1 + JJyt+1 +KKyt + LLzt+1 +MMzt]

zt+1 = NNzt + νt+1

where Et[νt+1] = 0. Then, solve.m (joint with calc_qst.m, qzdiv.m, qzswitch.m and

solve_qz.m ) solves for the equilibrium law of motion

xt = PPxt−1 +QQzt

yt = RRxt−1 + SSzt

like.m computes the likelihood of the data, dy, with the Kalman filter given a value for

the parameters vector, theta. like.m first calls a function, model.m, which solves the DSGE

and gives the equilibrium law of motion of the economy, the matrices PP,QQ,RR,SS,NN. In

case there does not exist a stable solution to the DSGE model the likelihood is set to −∞.

Otherwise, it computes the likelihood of a linear state space system, i.e.

st+1 = Fst +Gωt+1 (1)

Yt = Hst + ηt (2)

where ηt ∼ N(0, R) and ωt+1 ∼ N(0,Σ).

In a two step approach (regardless of the filter), 2s, the state space system is defined as
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follows

Yt = DATA(t, :, i)′

st =
(
xt−1 zt

)
F =

(
PP QQ
0 NN

)
G =

(
0 I

)′
H =

(
RR SS

)

The variance covariance matrix, R, of the measurement equation, (2), is set to zero. The

variance matrix, Σ, of the transition equation, (1), is a diagonal matrix with entries the

standard deviations of the DSGE model structural shock.

In a one step approach with a linear detrending filter, lt, the state space is defined as follows

Yt = data(t, :)′ − a− bt

st =
(
xt−1 zt

)
F =

(
PP QQ
0 NN

)
G =

(
0 I

)′
H =

(
RR SS

)

I fix the intercept a because it is difficult to estimate; in particular, the intercept does not

converge using the CUMSUM diagnostic. I use the first data observation as value for the

constant, i.e. a = data(1, :)′. I tried also other values as the mean value of the data or

1/2 ∗ (data(T, :) − data(1, :)), but the specification with the first observation fits the data

better. The variance covariance matrix, R, of the measurement equation is given by the

standard deviations of the linear trend.
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In a one step approach with a first difference filter, fd, the state space is defined as follows

Yt = data(t, :)′ − γ − data(t− 1, :)′

st =
(
xt−1 zt

)
F =

(
PP QQ
0 NN

)
G =

(
0 I

)′
H =

(
RR SS

)

The variance covariance matrix, R, of the measurement equation is given by the standard

deviations of the unit root.

Finally, in a one step approach with the HP filter, hp, the state space is defined as follows

Yt = data(t, :)′

st =
(
ytt µt xt−1 zt

)
ωt+1 =

(
ζt+1 εt+1

)
F =


I I 0 0
0 I 0 0
0 0 PP QQ
0 0 0 NN



G =


0 0
I 0
0 0
0 I


H =

(
I 0 RR SS

)

The variance covariance matrix, R, of the measurement equation, (2), is set to zero. The

variance matrix of the transition equation, Σ, is a diagonal matrix with entries the standard

deviations of the stochastic I(2) trend and standard deviations of the DSGE model structural

shock.

prior.m computes the (log) value of the prior distribution evaluated at a certain value for

the parameters, theta, for a particular type of estimation, two step, 2s, hp-dsge, hp, lt-dsge,

lt and fd-dsge, fd. Prior selection is quite standard; I assumed Beta distribution for those

6



parameters that must lie in the 0-1 interval, like ρR, ζp, ρχ, ρa. I choose a prior mean close to

0.5 for the probability of keeping the prices fixed, whereas the autoregressive parameters in

the exogenous processes have prior mean close to 0.7. I employ Gamma or Inverse Gamma

distributions for the parameters that must be positive, like the elasticity of consumption and

leisure (σc and σn). For the standard deviations, I use Inverse Gamma with mean close to

0.006 and standard deviation of 0.002. The remaining parameters have normal distributions.

var_rwm.m sets the variance of the RWM algorithm. The input are the data, data, scal-

ing parameter, k, which is set in MAIN.m, and type of estimation, two step, 2s, hp-dsge, hp,

lt-dsge, lt and fd-dsge, fd.

The folder POSTERIORS contains MATLAB files and other folders aimed to produce and

collect posterior statistic and distributions. So, one needs first to run the main program and

then posterior statistics can be computed. These statistics are computed as if the number

of iterations is one million. For smaller number of iterations one should revise the ’burn-in’

draws (burnin) and the way in which the draws are picked to compute the posterior distri-

butions (ELLE) in posterior.m .

main_posterior.m and posterior.m produce graphs, which are stored in the folder

graphs. For a given setup posterior.m first plots the log of the likelihood across draws.

The second series of graphs are the CUMSUM plots. After having removed the first 3/10 of

the chain, the program computes

CUMSUMj =

j∑
k=1

θk − µθ
σθ

where j = 1, ..., N0 and N0 = 0.7N , and µθ = 1
N0

∑N0

i=1 θi and σθ = 1
N0−1

∑N0

i=1(θi − µθ)2. If

the graphs settle after an initial period, then the chain has converged.

With one million draws, we get convergence for all the parameters after 500’000 draws, thus

to compute the posterior distributions we use the second half of the chain. We pick randomly

one every 1000 draws to remove the correlation among draws induced by the Markov Chain.

Posterior distributions are computed using kernel density methods. All the plots are saved

in the folder graphs. main_posterior.m run posterior.m for each setting. As mentioned, I

consider two types of estimation approaches: two step, where data are first filtered and then

DSGE structural parameters are estimated, and one step, where structural and filtering pa-
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rameters are jointly estimated. For each approach I consider three filters: linear detrending,

HP filter and first difference. Thus, we have 6 setups. Posterior graphs (likelihood, conver-

gence and prior-posterior distribution) are saved in .\POSTEIRORS\graphs\ according to the

econometric approach (one step, 1s, or two step, 2s) and to type of filter (linear detrending,

lt, HP filter, hp, and first difference, fd); for example, Convergence_S_1s_hp.eps means

that the Convergence plots for the structural parameters are computed with the estimates of

the one step method using the HP filter. Default format for graphs is .eps, but this option

can be changed in posterior.m.

POdds.m computes the Posterior Odds of different specifications. The Posterior Odds

(PO) is the ratio of predictive density of the data conditional on the DSGE model and a

filter specification with respect to the linear detrending one. The predictive density of the

data conditional on the DSGE model and on the filter specification is computed by taking

an average of the sum of the log likelihood and log prior for all the accepted draws. The

program computes the PO and creates a table for LATEX, which is saved in a .txt file in

.\POSTEIOR\table.

tables.m computes the posterior statistics for each setup. I consider two types of estima-

tion approaches: two step, where data are first filtered and then DSGE structural parameters

are estimated, and one step, where structural and filtering parameters are jointly estimated.

For each approach I consider three filters: linear detrending, HP filter and first difference.

Thus, we have 6 setups. Posterior statistics are saved in a .mat file according to the econo-

metric approach (one step, 1s, or two step, 2s) and to type of filter (linear detrending, lt,

HP filter, hp, and first difference, fd); for example, stat_1s_hp.mat means that the poste-

rior statistics are computed with the estimates of the one step method using the HP filter.

Output is stored in the folder .\POSTERIORS\table. Finally, in .\POSTERIORS\table there

is a file, tables_tex.m that prepares the the tables for LATEX.

apiter.m reduces randomly the dimensionality of theta. This program throws the LL

rows of the matrix theta, and then picks randomly one row every elle rows. This program

basically is aimed to remove the correlation between draws created by the Markov Chain of

the RWM algorithm.
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